Sparse recovery with general frame via general-dual-based analysis Dantzig selector

被引:2
作者
Choe, Chol-Guk [1 ]
Rim, Myong-Gil [1 ]
Ryang, Ji-Song [1 ]
机构
[1] Kim II Sung Univ, Fac Math, Pyongyang, North Korea
关键词
l(1)-analysis; restricted isometry property; sparse recovery; Dantzig selector; Gaussian noise; frames; compressed sensing; RESTRICTED ISOMETRY PROPERTY; SIGNAL RECOVERY;
D O I
10.1142/S1793557120501430
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers recovery of signals that are sparse or approximately sparse in terms of a general frame from undersampled data corrupted with additive noise. We show that the properly constrained l(1)-analysis, called general-dual-based analysis Dantzig selector, stably recovers a signal which is nearly sparse in terms of a general dual frame provided that the measurement matrix satisfies a restricted isometry property adapted to the general frame. As a special case, we consider the Gaussian noise.
引用
收藏
页数:11
相关论文
共 18 条
[1]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[2]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[3]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[4]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[5]  
Candes E.J. etal, 2006, INT C MATH, V3, P1433, DOI DOI 10.4171/022-3/69
[6]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[7]  
Candes E, 2007, ANN STAT, V35, P2313, DOI 10.1214/009053606000001523
[8]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[9]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[10]   Compressed sensing with coherent and redundant dictionaries [J].
Candes, Emmanuel J. ;
Eldar, Yonina C. ;
Needell, Deanna ;
Randall, Paige .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 31 (01) :59-73