Codescent theory - I: Foundations

被引:3
|
作者
Balmer, P [1 ]
Matthey, M [1 ]
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1016/j.topol.2004.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a cofibrantly generated model category S, a small category C and a subcategory D of C. The category S-C of functors from C to S has a model structure, with weak equivalences and fibrations defined objectwise but only on D. Our first concern is the effect of moving C, D and S. The main notion introduced here is the "D-codescent" property for objects in S-C. Our program aims at reformulating as codescent statements the Conjectures of Baum-Connes and Farrell-Jones, and, in the long run, at tackling them with new methods. We set the grounds of a systematic theory of codescent, including pull-backs, push-forwards and various invariance properties. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 59
页数:49
相关论文
共 50 条
  • [11] Codescent objects and coherence
    Lack, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 175 (1-3) : 223 - 241
  • [12] Towards a unified theory of muscle contraction. I: Foundations
    Smith, D. A.
    Geeves, M. A.
    Sleep, J.
    Mijailovich, S. M.
    ANNALS OF BIOMEDICAL ENGINEERING, 2008, 36 (10) : 1624 - 1640
  • [13] Categories and Foundations of the Theory of Nonlinear Controlled Dynamical Systems: I
    V. I. Elkin
    Differential Equations, 2002, 38 : 1559 - 1573
  • [14] STUDIES IN THEORY OF GENERALIZED DENSITY OPERATORS .I. FOUNDATIONS
    BRANDSTATTER, JJ
    PELTZER, C
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 16 (01) : 123 - +
  • [15] Theory of Electromagnetic Radiation in Nonlocal Metamaterials — Part I: Foundations
    Mikki S.
    Progress In Electromagnetics Research B, 2020, 89 : 63 - 86
  • [16] Towards a Unified Theory of Muscle Contraction. I: Foundations
    D.A. Smith
    M.A. Geeves
    J. Sleep
    S.M. Mijailovich
    Annals of Biomedical Engineering, 2008, 36 : 1624 - 1640
  • [17] Hermitian K-theory for stable ∞-categories I: Foundations
    Calmes, Baptiste
    Dotto, Emanuele
    Harpaz, Yonatan
    Hebestreit, Fabian
    Land, Markus
    Moi, Kristian
    Nardin, Denis
    Nikolaus, Thomas
    Steimle, Wolfgang
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (01):
  • [18] Foundations for a theory of the chemical field. I - General aspects
    Putz, MV
    Chiriac, A
    Mracec, M
    REVUE ROUMAINE DE CHIMIE, 2001, 46 (04) : 387 - 393
  • [19] Galois codescent for motivic tame kernels
    Assim, J.
    Movahhedi, A.
    ANNALES MATHEMATIQUES DU QUEBEC, 2025,
  • [20] Integrable Scalar Cosmologies I. Foundations and links with String Theory
    Fre, P.
    Sagnotti, A.
    Sorin, A. S.
    NUCLEAR PHYSICS B, 2013, 877 (03) : 1028 - 1106