Radius of analyticity for the Camassa-Holm equation on the line

被引:4
作者
Himonas, A. Alexandrou [1 ]
Petronilho, Gerson [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Camassa-Holm equation; Cauchy problem; Analytic data; Global in time solutions; Analytic spaces; Exponential lower bound on the radius of analyticity; 3-DIMENSIONAL EULER EQUATIONS; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; SPATIAL ANALYTICITY; CAUCHY-PROBLEM; KDV EQUATION; PEAKON SOLUTIONS; LOWER BOUNDS; FAMILY; PERSISTENCE;
D O I
10.1016/j.na.2018.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using estimates in Sobolev spaces we prove that the solution to the Cauchy problem for the Camassa-Holm equation on the line with analytic initial data u(0)(x) and satisfying the McKean condition, that is the quantity m(0)(x) = (1 - (2)(partial derivative x))u(0)(x) does not change sign, is analytic in the spatial variable for all time. Furthermore, we obtain explicit lower bounds for the radius of spatial analyticity r(t) given by r(t) >= A(-1) (1 + C(1)Bt)(-1) exp{-C-0 parallel to u(0)parallel to(H1t)}, where A, B, C-1 and C-0 are suitable positive constants. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Peakons of the Camassa-Holm equation
    Liu, ZR
    Qian, TF
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) : 473 - 480
  • [32] Well-posedness and analyticity for the Cauchy problem for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Mu, Chunlai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 173 - 182
  • [33] Solutions of the Camassa-Holm equation with accumulating breaking times
    Grunert, Katrin
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 91 - 105
  • [34] Well-posedness for stochastic Camassa-Holm equation
    Chen, Yong
    Gao, Hongjun
    Guo, Boling
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) : 2353 - 2379
  • [35] ON A THREE-COMPONENT CAMASSA-HOLM EQUATION WITH PEAKONS
    Mi, Yongsheng
    Mu, Chunlai
    KINETIC AND RELATED MODELS, 2014, 7 (02) : 305 - 339
  • [36] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [37] LONG TIME ASYMPTOTICS OF THE CAMASSA-HOLM EQUATION ON THE HALF-LINE
    De Monvel, Anne Boutet
    Shepelsky, Dmitry
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (07) : 3015 - 3056
  • [38] Properties of solutions to the Camassa-Holm equation on the line in a class containing the peakons
    Linares, Felipe
    Ponce, Gustavo
    Sideris, Thomas C.
    ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 : 197 - 246
  • [39] Nonuniform dependence and well-posedness for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Wang, Linsong
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1520 - 1548
  • [40] The Cauchy problem for a generalized Camassa-Holm equation
    Mi, Yongsheng
    Liu, Yue
    Guo, Boling
    Luo, Ting
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6739 - 6770