Radius of analyticity for the Camassa-Holm equation on the line

被引:4
|
作者
Himonas, A. Alexandrou [1 ]
Petronilho, Gerson [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Camassa-Holm equation; Cauchy problem; Analytic data; Global in time solutions; Analytic spaces; Exponential lower bound on the radius of analyticity; 3-DIMENSIONAL EULER EQUATIONS; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; SPATIAL ANALYTICITY; CAUCHY-PROBLEM; KDV EQUATION; PEAKON SOLUTIONS; LOWER BOUNDS; FAMILY; PERSISTENCE;
D O I
10.1016/j.na.2018.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using estimates in Sobolev spaces we prove that the solution to the Cauchy problem for the Camassa-Holm equation on the line with analytic initial data u(0)(x) and satisfying the McKean condition, that is the quantity m(0)(x) = (1 - (2)(partial derivative x))u(0)(x) does not change sign, is analytic in the spatial variable for all time. Furthermore, we obtain explicit lower bounds for the radius of spatial analyticity r(t) given by r(t) >= A(-1) (1 + C(1)Bt)(-1) exp{-C-0 parallel to u(0)parallel to(H1t)}, where A, B, C-1 and C-0 are suitable positive constants. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] ON THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Chen, Defu
    Li, Yongsheng
    Yan, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 871 - 889
  • [22] On H 2-solutions for a Camassa-Holm type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [23] An asymptotic property of the Camassa-Holm equation
    Jia, Jia
    Kang, Shun-Guang
    Tang, Tai-Man
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 : 55 - 64
  • [24] Multisymplectic method for the Camassa-Holm equation
    Zhang, Yu
    Deng, Zi-Chen
    Hu, Wei-Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 12
  • [25] Backlund Transformations for the Camassa-Holm Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 45 - 69
  • [26] Differential invariants of Camassa-Holm equation
    Li, Wei
    Su, Zhong-Yu
    Wang, Fei
    Li, Wen-Ting
    CHINESE JOURNAL OF PHYSICS, 2019, 59 : 153 - 159
  • [27] Wave Breaking of the Camassa-Holm Equation
    Jiang, Zaihong
    Ni, Lidiao
    Zhou, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 235 - 245
  • [28] DISSIPATIVE SOLUTIONS FOR THE CAMASSA-HOLM EQUATION
    Holden, Helge
    Raynaud, Xavier
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1047 - 1112
  • [29] Continuity properties of the data-to-solution map for the generalized Camassa-Holm equation
    Holmes, John
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (02) : 635 - 642
  • [30] Peakons of the Camassa-Holm equation
    Liu, ZR
    Qian, TF
    APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) : 473 - 480