VECTOR QUANTILE REGRESSION: AN OPTIMAL TRANSPORT APPROACH

被引:71
作者
Carlier, Guillaume [1 ]
Chernozhukov, Victor [2 ,3 ]
Galichon, Alfred [4 ,5 ]
机构
[1] Univ Paris 09, CEREMADE, UMR CNRS 7534, Pl Lattre de Tassigny, F-75775 Paris 16, France
[2] MIT, Dept Econ, 50 Mem Dr,E52-361B, Cambridge, MA 02142 USA
[3] MIT, Ctr Stat, 50 Mem Dr,E52-361B, Cambridge, MA 02142 USA
[4] NYU, Dept Econ, 70 Washington Sq South, New York, NY 10013 USA
[5] NYU, Courant Inst Math Sci, 70 Washington Sq South, New York, NY 10013 USA
基金
欧洲研究理事会;
关键词
Vector quantile regression; vector conditional quantile function; Monge-Kantorovich-Brenier; MULTIVARIATE QUANTILES;
D O I
10.1214/15-AOS1401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in R-d given covariates Z = z, taking values in R-k, is a map u bar right arrow Q(Y vertical bar Z) (u, z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distribution F-U, for instance uniform distribution on a unit cube in Rd, the random vector Q(Y vertical bar Z) (U, z) has the distribution of Y conditional on Z = z. Moreover, we have a strong representation, Y = Q(Y vertical bar Z) (U, Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation, Y = beta(U)(inverted perpendicular) f (Z), for f (Z) denoting a known set of transformations of Z, where u bar right arrow beta(u)(inverted perpendicular) f (Z) is a monotone map, the gradient of a convex function and the quantile regression coefficients u bar right arrow beta(u) have the interpretations analogous to that of the standard scalar quantile regression. As f (Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge Kantorovich's optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. An application to multiple Engel curve estimation is considered.
引用
收藏
页码:1165 / 1192
页数:28
相关论文
共 27 条
[1]  
[Anonymous], 1855, BUDGETS EC CLASSES O
[2]   ON MULTIVARIATE QUANTILES UNDER PARTIAL ORDERS [J].
Belloni, Alexandre ;
Winkler, Robert L. .
ANNALS OF STATISTICS, 2011, 39 (02) :1125-1179
[4]  
Carlier G., 2015, VECTOR QUANTILE RE S, DOI [10.1214/15-AOS1401SUPP, DOI 10.1214/15-AOS1401SUPP]
[5]  
Chaudhuri P, 1996, J AM STAT ASSOC, V91, P862
[6]   Quantile and Probability Curves Without Crossing [J].
Chernozhukov, Victor ;
Fernandez-Val, Ivan ;
Galichon, Alfred .
ECONOMETRICA, 2010, 78 (03) :1093-1125
[7]   Estimating the Technology of Cognitive and Noncognitive Skill Formation [J].
Cunha, Flavio ;
Heckman, James J. ;
Schennach, Susanne M. .
ECONOMETRICA, 2010, 78 (03) :883-931
[8]   EMPIRICAL PROBABILITY PLOTS AND STATISTICAL-INFERENCE FOR NONLINEAR MODELS IN 2-SAMPLE CASE [J].
DOKSUM, K .
ANNALS OF STATISTICS, 1974, 2 (02) :267-277
[9]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552
[10]  
Ekeland I., 1999, CLASSICS APPL MATH, V28