共 50 条
Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid
被引:61
|作者:
Zhang, Xin-Rong
[1
]
Wang, Guan-Bang
[1
]
机构:
[1] Peking Univ, Dept Energy & Resources Engn, Coll Engn, Beijing 100871, Peoples R China
关键词:
Brayton cycle;
compressed CO2 energy storage;
thermodynamic analysis;
sensitivity analysis;
PUMPED HYDRO STORAGE;
CARBON-DIOXIDE;
CONCEPTUAL DESIGN;
HEAT INTEGRATION;
CYCLES;
OPTIMIZATION;
PART;
D O I:
10.1002/er.3732
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Because of rapidly growing renewable power capacity, energy storage system is in urgent need to cope with the reliability and stability challenges. CO2 has already been selected as the working fluid, including thermo-electrical energy storage or electrothermal energy storage systems and compressed CO2 energy storage (CCES) systems. In this paper, a CCES system based on Brayton cycle with hot water as the heat storage medium is proposed and analyzed. Thermodynamic model of the system is established for energy and exergy analysis. Sensitivity analysis is then conducted to reveal effects of different parameters on system performances and pursue optimization potential. At a typical transcritical operation condition, round trip efficiency is 60% with energy density of 2.6kWh/m(3). And for the typical supercritical operation condition, the round trip efficiency can reach 71% with energy density of 23kWh/m(3). High round trip efficiency and energy density, which is comparable with those of compressed air energy storage systems, thermo-electrical energy storage (electrothermal energy storage) systems, and other CCES systems, lead to promising prospect of the proposed system. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:1487 / 1503
页数:17
相关论文