Thermodynamic analysis of a novel energy storage system based on compressed CO2 fluid

被引:61
|
作者
Zhang, Xin-Rong [1 ]
Wang, Guan-Bang [1 ]
机构
[1] Peking Univ, Dept Energy & Resources Engn, Coll Engn, Beijing 100871, Peoples R China
关键词
Brayton cycle; compressed CO2 energy storage; thermodynamic analysis; sensitivity analysis; PUMPED HYDRO STORAGE; CARBON-DIOXIDE; CONCEPTUAL DESIGN; HEAT INTEGRATION; CYCLES; OPTIMIZATION; PART;
D O I
10.1002/er.3732
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Because of rapidly growing renewable power capacity, energy storage system is in urgent need to cope with the reliability and stability challenges. CO2 has already been selected as the working fluid, including thermo-electrical energy storage or electrothermal energy storage systems and compressed CO2 energy storage (CCES) systems. In this paper, a CCES system based on Brayton cycle with hot water as the heat storage medium is proposed and analyzed. Thermodynamic model of the system is established for energy and exergy analysis. Sensitivity analysis is then conducted to reveal effects of different parameters on system performances and pursue optimization potential. At a typical transcritical operation condition, round trip efficiency is 60% with energy density of 2.6kWh/m(3). And for the typical supercritical operation condition, the round trip efficiency can reach 71% with energy density of 23kWh/m(3). High round trip efficiency and energy density, which is comparable with those of compressed air energy storage systems, thermo-electrical energy storage (electrothermal energy storage) systems, and other CCES systems, lead to promising prospect of the proposed system. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:1487 / 1503
页数:17
相关论文
共 50 条
  • [1] Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid
    Zhang, Yuan
    Yang, Ke
    Hong, Hui
    Zhong, Xiaohui
    Xu, Jianzhong
    RENEWABLE ENERGY, 2016, 99 : 682 - 697
  • [2] Justification of CO2 as the working fluid for a compressed gas energy storage system: A thermodynamic and economic study
    Liu, Zhan
    Yang, Xuqing
    Jia, Wenguang
    Li, Hailong
    Yang, Xiaohu
    JOURNAL OF ENERGY STORAGE, 2020, 27
  • [3] Thermodynamic analysis of a novel combined cooling, heating, and power system consisting of wind energy and transcritical compressed CO2 energy storage
    Zhang, Yuan
    Lin, Yiheng
    Lin, Fangzi
    Yang, Ke
    ENERGY CONVERSION AND MANAGEMENT, 2022, 260
  • [4] Thermodynamic analysis and performance evaluation of a novel energy storage-based supercritical CO2 power system with ejector driven by nuclear energy
    Lou, Juwei
    Wang, Jiangfeng
    Xia, Jiaxi
    Du, Yang
    Zhao, Pan
    Wang, Shunsen
    ENERGY CONVERSION AND MANAGEMENT, 2022, 272
  • [5] Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy
    Wang, Guan-Bang
    Zhang, Xin-Rong
    ENERGY CONVERSION AND MANAGEMENT, 2017, 148 : 1248 - 1264
  • [6] Thermodynamic analysis on the feasibility of a liquid energy storage system using CO2-based mixture as the working fluid
    Liu, Zhan
    Liu, Xu
    Zhang, Weifeng
    Yang, Shanju
    Li, Hailong
    Yang, Xiaohu
    ENERGY, 2022, 238
  • [7] Thermodynamic analysis of compressed CO2 energy storage in salt caverns with gravel stabilization
    Stepanek, Jan
    Minkley, Wolfgang
    Syblik, Jan
    Dostal, Vaclav
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [8] Thermodynamic analysis of a novel compressed carbon dioxide energy storage system with low-temperature thermal storage
    Zhang, Yuan
    Yao, Erren
    Zhang, Xuelai
    Yang, Ke
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6531 - 6554
  • [9] Dynamic operating characteristics of a compressed CO2 energy storage system
    Huang, Qingxi
    Feng, Biao
    Liu, Shengchun
    Ma, Cuiping
    Li, Hailong
    Sun, Qie
    APPLIED ENERGY, 2023, 341
  • [10] Thermodynamic analysis of a hybrid cogeneration energy system based on compressed air energy storage with high temperature thermal energy storage and supercritical CO2 Brayton cycle
    Cao, Ruifeng
    Ni, Hexi
    Wang, Yufei
    Duan, Yanfeng
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (10) : 14191 - 14205