TempNet: Online Semantic Segmentation on Large-scale Point Cloud Series

被引:0
|
作者
Zhou, Yunsong [1 ]
Zhu, Hongzi [1 ]
Li, Chunqin [1 ]
Cui, Tiankai [1 ]
Chang, Shan [2 ]
Guo, Minyi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Donghua Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/ICCV48922.2021.00703
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online semantic segmentation on a time series of point cloud frames is an essential task in autonomous driving. Existing models focus on single-frame segmentation, which cannot achieve satisfactory segmentation accuracy and offer unstably flicker among frames. In this paper, we propose a light-weight semantic segmentation framework for large-scale point cloud series, called TempNet, which can improve both the accuracy and the stability of existing semantic segmentation models by combining a novel frame aggregation scheme. To be computational cost-efficient, feature extraction and aggregation are only conducted on a small portion of key frames via a temporal feature aggregation (TFA) network using an attentional pooling mechanism, and such enhanced features are propagated to the intermediate non-key frames. To avoid information loss from non-key frames, a partial feature update (PFU) network is designed to partially update the propagated features with the local features extracted on a non-key frame if a large disparity between the two is quickly assessed. As a result, consistent and information-rich features can be obtained for each frame. We implement TempNet on five state-of-the-art (SOTA) point cloud segmentation models and conduct extensive experiments on the SemanticKITTI dataset. Results demonstrate that TempNet outperforms SOTA competitors by wide margins with little extra computational cost.
引用
收藏
页码:7098 / 7107
页数:10
相关论文
共 50 条
  • [21] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [22] 3D semantic segmentation using deep learning for large-scale indoor point cloud
    Chen Hui
    Xu Peng
    Zuo Yipeng
    Wang Weina
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1650 - 1655
  • [23] A large-scale point cloud semantic segmentation network via local dual features and global correlations
    Zhao, Yiqiang
    Ma, Xingyi
    Hu, Bin
    Zhang, Qi
    Ye, Mao
    Zhou, Guoqing
    COMPUTERS & GRAPHICS-UK, 2023, 111 : 133 - 144
  • [24] Multistage Scene-Level Constraints for Large-Scale Point Cloud Weakly Supervised Semantic Segmentation
    Su, Yanfei
    Cheng, Ming
    Yuan, Zhimin
    Liu, Weiquan
    Zeng, Wankang
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [25] LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds
    Feng, Guoqiang
    Li, Weilong
    Zhao, Xiaolin
    Yang, Xuemeng
    Kong, Xin
    Huang, TianXin
    Cui, Jinhao
    IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 107 - 115
  • [26] BushNet: Effective semantic segmentation of bush in large-scale point clouds
    Wei, Hejun
    Xu, Enyong
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Dong, Zhen
    Li, Zhengqiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [27] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [28] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [29] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] Large-Scale Unsupervised Semantic Segmentation
    Gao, Shanghua
    Li, Zhong-Yu
    Yang, Ming-Hsuan
    Cheng, Ming-Ming
    Han, Junwei
    Torr, Philip
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7457 - 7476