TempNet: Online Semantic Segmentation on Large-scale Point Cloud Series

被引:0
|
作者
Zhou, Yunsong [1 ]
Zhu, Hongzi [1 ]
Li, Chunqin [1 ]
Cui, Tiankai [1 ]
Chang, Shan [2 ]
Guo, Minyi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Donghua Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1109/ICCV48922.2021.00703
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Online semantic segmentation on a time series of point cloud frames is an essential task in autonomous driving. Existing models focus on single-frame segmentation, which cannot achieve satisfactory segmentation accuracy and offer unstably flicker among frames. In this paper, we propose a light-weight semantic segmentation framework for large-scale point cloud series, called TempNet, which can improve both the accuracy and the stability of existing semantic segmentation models by combining a novel frame aggregation scheme. To be computational cost-efficient, feature extraction and aggregation are only conducted on a small portion of key frames via a temporal feature aggregation (TFA) network using an attentional pooling mechanism, and such enhanced features are propagated to the intermediate non-key frames. To avoid information loss from non-key frames, a partial feature update (PFU) network is designed to partially update the propagated features with the local features extracted on a non-key frame if a large disparity between the two is quickly assessed. As a result, consistent and information-rich features can be obtained for each frame. We implement TempNet on five state-of-the-art (SOTA) point cloud segmentation models and conduct extensive experiments on the SemanticKITTI dataset. Results demonstrate that TempNet outperforms SOTA competitors by wide margins with little extra computational cost.
引用
收藏
页码:7098 / 7107
页数:10
相关论文
共 50 条
  • [1] Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud
    Zhang, Yachao
    Li, Zonghao
    Xie, Yuan
    Qu, Yanyun
    Li, Cuihua
    Mei, Tao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3421 - 3429
  • [2] Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
    Landrieu, Loic
    Simonovsky, Martin
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4558 - 4567
  • [3] RailPC: A large-scale railway point cloud semantic segmentation dataset
    Jiang, Tengping
    Li, Shiwei
    Zhang, Qinyu
    Wang, Guangshuai
    Zhang, Zequn
    Zeng, Fankun
    An, Peng
    Jin, Xin
    Liu, Shan
    Wang, Yongjun
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (06) : 1548 - 1560
  • [4] Cascaded Contextual Reasoning for Large-Scale Point Cloud Semantic Segmentation
    Zhang, Fengyi
    Xia, Xiuyu
    IEEE ACCESS, 2023, 11 : 20755 - 20768
  • [5] LEARD-Net: Semantic segmentation for large-scale point cloud scene
    Zeng, Ziyin
    Xu, Yongyang
    Xie, Zhong
    Tang, Wei
    Wan, Jie
    Wu, Weichao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [6] Hybrid Offset Position Encoding for Large-Scale Point Cloud Semantic Segmentation
    Xiao, Yu
    Wu, Hui
    Chen, Yisheng
    Chen, Chongcheng
    Dong, Ruihai
    Lin, Ding
    REMOTE SENSING, 2025, 17 (02)
  • [7] STSD:A large-scale benchmark for semantic segmentation of subway tunnel point cloud
    Cui, Hao
    Li, Jian
    Mao, Qingzhou
    Hu, Qingwu
    Dong, Cuijun
    Tao, Yiwen
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024, 150
  • [8] A Large-Scale Network Construction and Lightweighting Method for Point Cloud Semantic Segmentation
    Han, Jiawei
    Liu, Kaiqi
    Li, Wei
    Chen, Guangzhi
    Wang, Wenguang
    Zhang, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2004 - 2017
  • [9] Radial Transformer for Large-Scale Outdoor LiDAR Point Cloud Semantic Segmentation
    He, Xiang
    Li, Xu
    Ni, Peizhou
    Xu, Wang
    Xu, Qimin
    Liu, Xixiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [10] Point and voxel cross perception with lightweight cosformer for large-scale point cloud semantic segmentation
    Zhang, Shuai
    Wang, Biao
    Chen, Yiping
    Zhang, Shuhang
    Zhang, Wuming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 131