Fueter's theorem in discrete Clifford analysis

被引:0
作者
De Ridder, Hilde [1 ]
Sommen, Frank [1 ]
机构
[1] Univ Ghent, Dept Math Anal, Fac Engn & Architecture, Bldg S22,Galglaan 2, B-9000 Ghent, Belgium
基金
比利时弗兰德研究基金会;
关键词
discrete Clifford analysis; axial monogenicity; Fueter theorem;
D O I
10.1002/mma.3612
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discretize techniques for the construction of axially monogenic functions to the setting of discrete Clifford analysis. Wherefore, we work in the discrete Hermitian Clifford setting, where each basis vector e(j) is split into a forward and backward basis vector: ej=ej++ej-. We prove a discrete version of Fueter's theorem in odd dimension by showing that for a discrete monogenic function f((0),(1)) left-monogenic in two variables (0) and (1) and for a left-monogenic P-k(), the m-dimensional function k+m-12f(01)Pk() is in itself left monogenic, that is, a discrete function in the kernel of the discrete Dirac operator. Closely related, we consider a Vekua-type system for the construction of axially monogenic functions. We consider some explicit examples: the discrete axial-exponential functions and the discrete Clifford-Hermite polynomials. Copyright (c) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:1908 / 1920
页数:13
相关论文
共 15 条
  • [1] On solutions of a discretized heat equation in discrete Clifford analysis
    Baaske, F.
    Bernstein, S.
    De Ridder, H.
    Sommen, F.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (02) : 271 - 295
  • [2] Brackx F., 1982, Clifford analysis
  • [3] Generalized Hermitean Clifford-Hermite polynomials and the associated wavelet transform
    Brackx, Fred
    De Schepper, Hennie
    De Schepper, Nele
    Sommen, Frank
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (05) : 606 - 630
  • [4] Fueter polynomials in discrete Clifford analysis
    De Ridder, H.
    De Schepper, H.
    Sommen, F.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (1-2) : 253 - 268
  • [5] De Ridder H, 2013, DISCRETE CLIFFORD AN
  • [6] THE CAUCHY-KOVALEVSKAYA EXTENSION THEOREM IN DISCRETE CLIFFORD ANALYSIS
    De Ridder, Hilde
    De Schepper, Hennie
    Sommen, Frank
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) : 1097 - 1109
  • [7] De Rudder H, 2010, P AM MATH SOC, V138, P3241
  • [8] A Basic Framework for Discrete Clifford Analysis
    De Schepper, Hennie
    Sommen, Frank
    Van de Voorde, Liesbet
    [J]. EXPERIMENTAL MATHEMATICS, 2009, 18 (04) : 385 - 395
  • [9] Delanghe R., 2001, Computational Methods and Function Theory, V1, P107
  • [10] Delanghe R., 1992, Clifford algebras and spinor-valued functions