Numerical solution of time fractional diffusion systems

被引:39
|
作者
Burrage, Kevin [1 ,2 ,3 ,4 ]
Cardone, Angelamaria [5 ]
D'Ambrosio, Raffaele [5 ]
Paternoster, Beatrice [5 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld, Australia
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4000, Australia
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[5] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
关键词
Diffusion systems; Fractional differential equations; Spectral methods; Finite-difference schemes; ANOMALOUS DIFFUSION; EQUATION; APPROXIMATION; BEHAVIOR; TISSUE; DOMAIN;
D O I
10.1016/j.apnum.2017.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a general class of diffusion problem is considered, where the standard time derivative is replaced by a fractional one. For the numerical solution, a mixed method is proposed, which consists of a finite difference scheme through space and a spectral collocation method through time. The spectral method considerably reduces the computational cost with respect to step-by-step methods to discretize the fractional derivative. Some classes of spectral bases are considered, which exhibit different convergence rates and some numerical results based on time diffusion reaction diffusion equations are given. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 94
页数:13
相关论文
共 50 条
  • [21] NUMERICAL SOLUTION OF NONSTATIONARY PROBLEMS FOR A SPACE-FRACTIONAL DIFFUSION EQUATION
    Vabishchevich, Petr N.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 116 - 139
  • [22] A Numerical Scheme for Time-Space Fractional diffusion Models
    Aldhaban, Tahani
    Furati, Khaled M.
    IFAC PAPERSONLINE, 2024, 58 (12): : 73 - 77
  • [23] Numerical computation for backward time-fractional diffusion equation
    Dou, F. F.
    Hon, Y. C.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 138 - 146
  • [24] A Numerical Solution to Fractional Diffusion Equation for Force-Free Case
    Tasbozan, O.
    Esen, A.
    Yagmurlu, N. M.
    Ucar, Y.
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] Numerical solution of fractional diffusion-reaction problems based on BURA
    Harizanov, Stanislav
    Lazarov, Raytcho
    Margenov, Svetozar
    Marinov, Pencho
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (02) : 316 - 331
  • [26] On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative
    Partohaghighi, Mohammad
    Inc, Mustafa
    Bayram, Mustafa
    Baleanu, Dumitru
    OPEN PHYSICS, 2019, 17 (01): : 816 - 822
  • [27] Numerical method for fractional sub-diffusion equation with space-time varying diffusivity and smooth solution
    Li, Xuhao
    Wong, Patricia J. Y.
    Alikhanov, Anatoly A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 464
  • [28] On the numerical solution of time fractional Black-Scholes equation
    Sarboland, M.
    Aminataei, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (09) : 1736 - 1753
  • [29] Numerical simulation of time partial fractional diffusion model by Laplace transform
    Ali, Amjad
    Suwan, Iyad
    Abdeljawad, Thabet
    Abdullah
    AIMS MATHEMATICS, 2022, 7 (02): : 2878 - 2890
  • [30] Numerical solution of a non-local fractional convection-diffusion equation
    Osorio, F. C.
    Amador, P. A.
    Bedoya, C. A.
    ENTRE CIENCIA E INGENIERIA, 2024, 18 (35): : 25 - 31