Numerical solution of time fractional diffusion systems

被引:39
|
作者
Burrage, Kevin [1 ,2 ,3 ,4 ]
Cardone, Angelamaria [5 ]
D'Ambrosio, Raffaele [5 ]
Paternoster, Beatrice [5 ]
机构
[1] Queensland Univ Technol, Brisbane, Qld, Australia
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Queensland Univ Technol, ARC Ctr Excellence Math & Stat Frontiers, Brisbane, Qld 4000, Australia
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[5] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
关键词
Diffusion systems; Fractional differential equations; Spectral methods; Finite-difference schemes; ANOMALOUS DIFFUSION; EQUATION; APPROXIMATION; BEHAVIOR; TISSUE; DOMAIN;
D O I
10.1016/j.apnum.2017.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a general class of diffusion problem is considered, where the standard time derivative is replaced by a fractional one. For the numerical solution, a mixed method is proposed, which consists of a finite difference scheme through space and a spectral collocation method through time. The spectral method considerably reduces the computational cost with respect to step-by-step methods to discretize the fractional derivative. Some classes of spectral bases are considered, which exhibit different convergence rates and some numerical results based on time diffusion reaction diffusion equations are given. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 94
页数:13
相关论文
共 50 条
  • [1] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [2] On the Solution of Time-Fractional Diffusion Models
    Cardone, Angelamaria
    Frasca-Caccia, Gianluca
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT I, 2022, 13375 : 47 - 60
  • [3] Numerical solution for the linear time and space fractional diffusion equation
    El Danaf, Talaat S.
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (09) : 1769 - 1777
  • [4] Stable numerical solution to a Cauchy problem for a time fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 40 : 128 - 137
  • [5] Numerical solution of fractional diffusion equation over a long time domain
    Alavizadeh, S. R.
    Ghaini, F. M. Maalek
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 : 240 - 250
  • [6] Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials
    Chen, Yiming
    Liu, Liqing
    Li, Xuan
    Sun, Yannan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (01): : 81 - 100
  • [7] The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation
    Shen, Shujun
    Liu, Fawang
    Anh, Vo V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 515 - 534
  • [8] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [9] Numerical Solution to the Space-Time Fractional Diffusion Equation and Inversion for the Space-Dependent Diffusion Coefficient
    Chi, Guangsheng
    Li, Gongsheng
    Sun, Chunlong
    Jia, Xianzheng
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (02) : 122 - 146
  • [10] Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart
    Stokes, Peter W.
    Philippa, Bronson
    Read, Wayne
    White, Ronald D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 282 : 334 - 344