Reaching critical MASS: Crowdsourcing designs for the next generation of materials acceleration platforms

被引:22
作者
Seifrid, Martin [1 ]
Hattrick-Simpers, Jason [2 ,3 ]
Aspuru-Guzik, Alan [1 ,2 ,4 ,5 ,6 ,7 ]
Kalil, Tom
Cranford, Steve
机构
[1] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[2] Univ Toronto, Dept Mat Sci, Toronto, ON M5S 3E4, Canada
[3] Nat Resources Canada, CanmetMAT, Hamilton, ON L8P 0A5, Canada
[4] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3H6, Canada
[5] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[6] Vector Inst Artificial Intelligence, Toronto, ON M5S 1M1, Canada
[7] Canadian Inst Adv Res, Toronto, ON M5S 1M1, Canada
关键词
Compendex;
D O I
10.1016/j.matt.2022.05.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the past decades, continual advancement of computational power has led to the prevalence of automation across science, in-dustry, and society, whereby digital solutions were developed algo-rithmically to exploit technical knowledge of a problem. However, we are currently entering a critical period of computational innova-tion, particularly in materials science. Non-intuitive materials accel-eration for societal solutions (MASS) can now potentially be uncov-ered by computational machine learning, artificial intelligence, and other self-driving methods for materials discovery. Herein, we invite the ideas for the next generation of materials acceleration platforms (MAPs). Help us reach critical mass of ideas and start a new materials reaction.
引用
收藏
页码:1972 / 1976
页数:5
相关论文
共 10 条
  • [1] Anderson J.R., 1985, CATAL SCI TECHNOL
  • [2] A GENETIC ALGORITHMIC FRAMEWORK FOR PROCESS DESIGN AND OPTIMIZATION
    ANDROULAKIS, IP
    VENKATASUBRAMANIAN, V
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1991, 15 (04) : 217 - 228
  • [3] Furka A, 2002, DRUG DISCOV TODAY, V7, P1
  • [4] Lavin A., 2021, ARXIV, DOI DOI 10.48550/ARXIV.2112.03235
  • [5] Autonomous experimentation systems for materials development: A community perspective
    Stach, Eric
    DeCost, Brian
    Kusne, A. Gilad
    Hattrick-Simpers, Jason
    Brown, Keith A.
    Reyes, Kristofer G.
    Schrier, Joshua
    Billinge, Simon
    Buonassisi, Tonio
    Foster, Ian
    Gomes, Carla P.
    Gregoire, John M.
    Mehta, Apurva
    Montoya, Joseph
    Olivetti, Elsa
    Park, Chiwoo
    Rotenberg, Eli
    Saikin, Semion K.
    Smullin, Sylvia
    Stanev, Valentin
    Maruyama, Benji
    [J]. MATTER, 2021, 4 (09) : 2702 - 2726
  • [6] Self-Driving Platform for Metal Nanoparticle Synthesis: Combining Microfluidics and Machine Learning
    Tao, Huachen
    Wu, Tianyi
    Kheiri, Sina
    Aldeghi, Matteo
    Aspuru-Guzik, Alan
    Kumacheva, Eugenia
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (51)
  • [7] Toward Better and Smarter Batteries by Combining AI with Multisensory and Self-Healing Approaches
    Vegge, Tejs
    Tarascon, Jean-Marie
    Edstrom, Kristina
    [J]. ADVANCED ENERGY MATERIALS, 2021, 11 (23)
  • [8] The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA
    Wagner, Jerrit
    Berger, Christian G.
    Du, Xiaoyan
    Stubhan, Tobias
    Hauch, Jens A.
    Brabec, Christoph J.
    [J]. JOURNAL OF MATERIALS SCIENCE, 2021, 56 (29) : 16422 - 16446
  • [9] Wright P., 1954, MAG CONER RES, V5, P139
  • [10] A COMBINATORIAL APPROACH TO MATERIALS DISCOVERY
    XIANG, XD
    SUN, XD
    BRICENO, G
    LOU, YL
    WANG, KA
    CHANG, HY
    WALLACEFREEDMAN, WG
    CHEN, SW
    SCHULTZ, PG
    [J]. SCIENCE, 1995, 268 (5218) : 1738 - 1740