Value-at-Risk (vaR);
Coherent risk measure;
Model uncertainty;
Cantelli bound;
Distortion function;
VALUE-AT-RISK;
MODEL UNCERTAINTY;
INFORMATION;
DEPENDENCE;
DISTRIBUTIONS;
AGGREGATION;
ALLOCATION;
SUMS;
D O I:
10.1016/j.insmatheco.2018.07.002
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
The study of worst-case scenarios for risk measures (e.g., Value-at-Risk) when the underlying risk (or portfolio of risks) is not completely specified is a central topic in the literature on robust risk measurement. In this paper, we tackle the open problem of deriving upper bounds for strictly concave distortion risk measures on moment spaces. Building on early results of Rustagi (1957, 1976), we show that in general this problem can be reduced to a parametric optimization problem. We completely specify the sharp upper bound (and corresponding maximizing distribution function) when the first moment and any other higher moment are fixed. Specifically, in the case of a fixed mean and variance, we generalize the Cantelli bound for (Tail) Value-at-Risk in that we express the sharp upper bound for a strictly concave distorted expectation as a weighted sum of the mean and standard deviation. (C) 2018 Elsevier B.V. All rights reserved.
机构:
Zhejiang Univ, Int Business Sch, Haining 314400, Peoples R ChinaZhejiang Univ, Int Business Sch, Haining 314400, Peoples R China
Shao, Hui
Zhang, Zhe George
论文数: 0引用数: 0
h-index: 0
机构:
Western Washington Univ, Dept Decis Sci, Bellingham, WA 98225 USA
Simon Fraser Univ, Beedie Sch Business, Burnaby, BC V5A 1S6, CanadaZhejiang Univ, Int Business Sch, Haining 314400, Peoples R China