Upper bounds for strictly concave distortion risk measures on moment spaces

被引:16
作者
Cornilly, D. [1 ,2 ]
Rueschendorf, L. [3 ]
Vanduffel, S. [4 ]
机构
[1] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
[2] Katholieke Univ Leuven, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[3] Univ Freiburg, Eckerstr 1, D-79104 Freiburg, Germany
[4] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Value-at-Risk (vaR); Coherent risk measure; Model uncertainty; Cantelli bound; Distortion function; VALUE-AT-RISK; MODEL UNCERTAINTY; INFORMATION; DEPENDENCE; DISTRIBUTIONS; AGGREGATION; ALLOCATION; SUMS;
D O I
10.1016/j.insmatheco.2018.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
The study of worst-case scenarios for risk measures (e.g., Value-at-Risk) when the underlying risk (or portfolio of risks) is not completely specified is a central topic in the literature on robust risk measurement. In this paper, we tackle the open problem of deriving upper bounds for strictly concave distortion risk measures on moment spaces. Building on early results of Rustagi (1957, 1976), we show that in general this problem can be reduced to a parametric optimization problem. We completely specify the sharp upper bound (and corresponding maximizing distribution function) when the first moment and any other higher moment are fixed. Specifically, in the case of a fixed mean and variance, we generalize the Cantelli bound for (Tail) Value-at-Risk in that we express the sharp upper bound for a strictly concave distorted expectation as a weighted sum of the mean and standard deviation. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 48 条
[31]   Worst VaR scenarios with given marginals and measures of association [J].
Kaas, Rob ;
Laeven, Roger J. A. ;
Nelsen, Roger B. .
INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (02) :146-158
[32]  
Karlin S., 1953, Geometry of Moment Spaces, volume12
[33]   On the Measurement of Economic Tail Risk [J].
Kou, Steven ;
Peng, Xianhua .
OPERATIONS RESEARCH, 2016, 64 (05) :1056-1072
[34]  
Kusuoka S., 2001, Advances in Mathematical Economics
[35]  
Li J. Y. M, 2018, OPER RES
[36]   On dependence consistency of CoVaR and some other systemic risk measures [J].
Mainik, Georg ;
Schaanning, Eric .
STATISTICS & RISK MODELING, 2014, 31 (01) :49-77
[37]  
Puccetti G., 2016, Dependence Modeling, V4
[38]   Reduction of Value-at-Risk bounds via independence and variance information [J].
Puccetti, Giovanni ;
Russchendorf, Ludger ;
Small, Daniel ;
Vanduffel, Steven .
SCANDINAVIAN ACTUARIAL JOURNAL, 2017, (03) :245-266
[39]  
Rüschendorf L, 2017, DEPEND MODEL, V5, P59, DOI 10.1515/demo-2017-0004
[40]   RANDOM-VARIABLES WITH MAXIMUM SUMS [J].
RUSCHENDORF, L .
ADVANCES IN APPLIED PROBABILITY, 1982, 14 (03) :623-632