PySight: plug and play photon counting for fast continuous volumetric intravital microscopy

被引:13
作者
Har-Gil, Hagai [1 ,2 ]
Golgher, Lior [1 ,2 ]
Israel, Shai [2 ,3 ]
Kain, David [1 ]
Cheshnovsky, Ori [4 ,5 ]
Parnas, Moshe [2 ,3 ]
Blinder, Pablo [1 ,2 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Neurobiol, 30 Haim Levanon St, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Med Sch, Tel Aviv, Israel
[4] Tel Aviv Univ, Raymond & Beverly Fac Exact Sci, Ctr Nanosci & Nanotechnol, Tel Aviv, Israel
[5] Tel Aviv Univ, Raymond & Beverly Fac Exact Sci, Sch Chem, Tel Aviv, Israel
来源
OPTICA | 2018年 / 5卷 / 09期
基金
欧盟地平线“2020”; 以色列科学基金会; 欧洲研究理事会;
关键词
FIELD-OF-VIEW; NEURONAL-ACTIVITY; 2-PHOTON; MULTIPHOTON; BRAIN; LASER; VOLTAGE;
D O I
10.1364/OPTICA.5.001104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Imaging increasingly large neuronal populations at high rates pushed multi-photon microscopy into the photon-deprived regime. We present PySight, an add-on hardware and software solution tailored for photon-deprived imaging conditions. PySight more than triples the measured median amplitude of neuronal calcium transients in awake mice and facilitates single-trial intravital voltage imaging in fruit flies. Its unique data streaming architecture allowed us to image a fruit fly's brain olfactory response over 234 mu m x 600 mu m x 330 mu m at 73 volumes per second, while retaining over 200 times lower data rates than those of a conventional data acquisition system with comparable voxel sizes (1.2 mu m x 1.2 mu m x 2.2 mu m). PySight requires no electronics expertise or custom synchronization boards, and its open-source software is extensible to any imaging method based on single-pixel (bucket) detectors. PySight offers an optimal data acquisition scheme for ever increasing imaging volumes of turbid living tissue. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1104 / 1112
页数:9
相关论文
共 59 条
  • [21] Rapid imaging of surgical breast excisions using direct temporal sampling two photon fluorescent lifetime imaging
    Giacomelli, Michael G.
    Sheikine, Yuri
    Vardeh, Hilde
    Connolly, James L.
    Fujimoto, James G.
    [J]. BIOMEDICAL OPTICS EXPRESS, 2015, 6 (11): : 4317 - 4325
  • [22] Guo Q., 2017, P SPIE
  • [23] Hamamatsu, PHOT COUNT HEAD PMT
  • [24] Cellular Level Brain Imaging in Behaving Mammals: An Engineering Approach
    Hamel, Elizabeth J. O.
    Grewe, Benjamin F.
    Parker, Jones G.
    Schnitzer, Mark J.
    [J]. NEURON, 2015, 86 (01) : 140 - 159
  • [25] Har-Gil H., 2017, PYSIGHT
  • [26] Har-Gil H., 2018, PYSIGHT DOCUMENTATIO
  • [27] Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems
    Hoover, Erich E.
    Field, Jeffrey J.
    Winters, David G.
    Young, Michael D.
    Chandler, Eric V.
    Speirs, John C.
    Lapenna, Jacob T.
    Kim, Susy M.
    Ding, Shi-you
    Bartels, Randy A.
    Wang, Jing W.
    Squier, Jeff A.
    [J]. JOURNAL OF BIOPHOTONICS, 2012, 5 (5-6) : 425 - 436
  • [28] Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging
    Isbaner, Sebastian
    Karedla, Narain
    Ruhlandt, Daja
    Stein, Simon Christoph
    Chizhik, Anna
    Gregor, Ingo
    Enderlein, Joerg
    [J]. OPTICS EXPRESS, 2016, 24 (09): : 9429 - 9445
  • [29] Karpf S., 2017, ARXIV170900512
  • [30] Kazemipour A., 2018, BIORXIV