PySight: plug and play photon counting for fast continuous volumetric intravital microscopy

被引:13
作者
Har-Gil, Hagai [1 ,2 ]
Golgher, Lior [1 ,2 ]
Israel, Shai [2 ,3 ]
Kain, David [1 ]
Cheshnovsky, Ori [4 ,5 ]
Parnas, Moshe [2 ,3 ]
Blinder, Pablo [1 ,2 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Neurobiol, 30 Haim Levanon St, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[3] Tel Aviv Univ, Sackler Med Sch, Tel Aviv, Israel
[4] Tel Aviv Univ, Raymond & Beverly Fac Exact Sci, Ctr Nanosci & Nanotechnol, Tel Aviv, Israel
[5] Tel Aviv Univ, Raymond & Beverly Fac Exact Sci, Sch Chem, Tel Aviv, Israel
来源
OPTICA | 2018年 / 5卷 / 09期
基金
欧盟地平线“2020”; 以色列科学基金会; 欧洲研究理事会;
关键词
FIELD-OF-VIEW; NEURONAL-ACTIVITY; 2-PHOTON; MULTIPHOTON; BRAIN; LASER; VOLTAGE;
D O I
10.1364/OPTICA.5.001104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Imaging increasingly large neuronal populations at high rates pushed multi-photon microscopy into the photon-deprived regime. We present PySight, an add-on hardware and software solution tailored for photon-deprived imaging conditions. PySight more than triples the measured median amplitude of neuronal calcium transients in awake mice and facilitates single-trial intravital voltage imaging in fruit flies. Its unique data streaming architecture allowed us to image a fruit fly's brain olfactory response over 234 mu m x 600 mu m x 330 mu m at 73 volumes per second, while retaining over 200 times lower data rates than those of a conventional data acquisition system with comparable voxel sizes (1.2 mu m x 1.2 mu m x 2.2 mu m). PySight requires no electronics expertise or custom synchronization boards, and its open-source software is extensible to any imaging method based on single-pixel (bucket) detectors. PySight offers an optimal data acquisition scheme for ever increasing imaging volumes of turbid living tissue. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1104 / 1112
页数:9
相关论文
共 59 条
  • [1] Simultaneous imaging of multiple focal planes using a two-photon scanning microscope
    Amir, W.
    Carriles, R.
    Hoover, E. E.
    Planchon, T. A.
    Durfee, C. G.
    Squier, J. A.
    [J]. OPTICS LETTERS, 2007, 32 (12) : 1731 - 1733
  • [2] Bares A. J., 2018, U.S. patent application, Patent No. [US20180196246A1, 20180196246]
  • [3] Fluorescence lifetime imaging by time-correlated single-photon counting
    Becker, W
    Bergmann, A
    Hink, MA
    König, K
    Benndorf, K
    Biskup, C
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2004, 63 (01) : 58 - 66
  • [4] Becker W., ADV OPTICAL METHODS, P103
  • [5] Becker W., 2017, BH TCSPC HDB
  • [6] Becker W., 2015, ADV TIME CORRELATED, V111
  • [7] Emerging Nanomedical Solutions for Angiogenesis Regulation Preface
    Blau, Rachel
    Neeman, Michal
    Satchi-Fainaro, Ronit
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2017, 119 : 1 - 2
  • [8] Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates
    Botcherby, Edward J.
    Smith, Christopher W.
    Kohl, Michael M.
    Debarre, Delphine
    Booth, Martin J.
    Juskaitis, Rimas
    Paulsen, Ole
    Wilson, Tony
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (08) : 2919 - 2924
  • [9] Two-Photon Lifetime Imaging of Voltage Indicating Proteins as a Probe of Absolute Membrane Voltage
    Brinks, Daan
    Klein, Aaron J.
    Cohen, Adam E.
    [J]. BIOPHYSICAL JOURNAL, 2015, 109 (05) : 914 - 921
  • [10] The log-dynamic brain: how skewed distributions affect network operations
    Buzsaki, Gyoergy
    Mizuseki, Kenji
    [J]. NATURE REVIEWS NEUROSCIENCE, 2014, 15 (04) : 264 - 278