Radius of Star-Likeness for Certain Subclasses of Analytic Functions

被引:1
作者
Zhang, Caihuan [1 ]
Haq, Mirajul [2 ]
Khan, Nazar [3 ]
Arif, Muhammad [2 ]
Ahmad, Khurshid [4 ]
Khan, Bilal [5 ]
机构
[1] Luoyang Normal Univ, Dept Informat Technol, Luoyang 471934, Peoples R China
[2] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[3] Abbottabad Univ Sci & Technol, Dept Math, Abbottabad 22010, Pakistan
[4] Govt Post Grad Coll Dargai, Dargai 23060, Pakistan
[5] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
univalent functions; star-like function; convex function; radius of star-likeness; STARLIKENESS;
D O I
10.3390/sym13122448
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we investigate a normalized anal tic (symmetric under rotation) function, f, in an open unit disk that satisfies the condition R(f(z)/g(z) ) > 0, for some analytic function, g, with R((z+1)(-2n)/z)g(z) > 0, for all n is an element of N. We calculate the radius constants for different classes of analytic functions, including, for example, for the class of star-like functions connected with the exponential functions, i.e., the lemniscate of Bernoulli, the sine function, cardioid functions, the sine hyperbolic inverse function, the Nephroid function, cosine function and parabolic star-like functions. The results obtained are sharp.
引用
收藏
页数:16
相关论文
共 32 条
[1]  
Ali RM, 2013, B MALAYS MATH SCI SO, V36, P23
[2]   Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane [J].
Ali, Rosihan M. ;
Jain, Naveen K. ;
Ravichandran, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) :6557-6565
[3]   Starlike Functions Associated with Cosine Functions [J].
Bano, Khadija ;
Raza, Mohsan .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (05) :1513-1532
[4]   Radius Problems for Starlike Functions Associated with the Sine Function [J].
Cho, N. E. ;
Kumar, V. ;
Kumar, S. S. ;
Ravichandran, V. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) :213-232
[5]   New Criteria for Meromorphic Starlikeness and Close-to-Convexity [J].
Ebadian, Ali ;
Cho, Nak Eun ;
Adegani, Ebrahim Analouei ;
Yalcin, Sibel .
MATHEMATICS, 2020, 8 (05)
[6]   Radii of convexity and strong starlikeness for some classes of analytic functions [J].
Gangadharan, A ;
Ravichandran, V ;
Shanmugam, TN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) :301-313
[7]   A New Modified Fixed-Point Iteration Process [J].
Garodia, Chanchal ;
Abdou, Afrah A. N. ;
Uddin, Izhar .
MATHEMATICS, 2021, 9 (23)
[8]  
Grunsky H., 1934, Schr. Deutsche Math.-Ver, V43, P140
[9]   Q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function [J].
Islam, Saeed ;
Khan, Muhammad Ghaffar ;
Ahmad, Bakhtiar ;
Arif, Muhammad ;
Chinram, Ronnason .
MATHEMATICS, 2020, 8 (10) :1-14
[10]   Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error [J].
Jantschi, Lorentz ;
Balint, Donatella ;
Bolboaca, Sorana D. .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016