Mexican hat wavelet transform of distributions

被引:20
作者
Pathak, R. S. [1 ]
Singh, Abhishek [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, DST Ctr Interdisciplinary Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Distribution space; wavelet transform; Mexican hat wavelet; Weierstrass transform;
D O I
10.1080/10652469.2016.1155569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Theory of Weierstrass transform is exploited to derive many interesting new properties of the Mexican hat wavelet transform. A real inversion formula in the differential operator form for the Mexican hat wavelet transform is established. Mexican hat wavelet transform of distributions is defined and its properties are studied. An approximation property of the distributional wavelet transform is investigated which is supported by a nice example.
引用
收藏
页码:468 / 483
页数:16
相关论文
共 50 条
[41]   The Ridgelet transform of distributions [J].
Kostadinova, S. ;
Pilipovic, S. ;
Saneva, K. ;
Vindas, J. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (05) :344-358
[42]   Wavelet Transform and Signal Denoising using Wavelet Method [J].
Polat Dautov, Cigdem ;
Ozerdem, Mehmet Sirac .
2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
[43]   Wavelet transform - capabilities expanded [J].
Pokorski, Krzysztof ;
Patorski, Krzysztof .
INTERFEROMETRY XVII: TECHNIQUES AND ANALYSIS, 2014, 9203
[44]   The continuous wavelet transform with rotations [J].
Jaime Navarro ;
Miguel Angel Alvarez .
Sampling Theory in Signal and Image Processing, 2005, 4 (1) :45-55
[45]   The Wavelet Transform in Clifford Analysis [J].
Jan Cnops .
Computational Methods and Function Theory, 2001, 1 (2) :353-374
[46]   Discrete lattice wavelet transform [J].
Olkkonen, Juuso T. ;
Olkkonen, Hannu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2007, 54 (01) :71-75
[47]   Selected applications of the wavelet transform [J].
Magalas, LB ;
Kwasniewski, J .
MECHANICAL SPECTROSCOPY II, PROCEEDINGS, 2003, 89 :355-364
[48]   Wavelet transform for structures analysis [J].
Nazar, Jose L. ;
Vega Gonzalez, Cristobal E. .
INGENIERIA UC, 2011, 18 (01) :7-11
[49]   Wavelet transform of coherent state [J].
Yu Hai-Jun ;
Du Jian-Ming ;
Zhang Xiu-Lan .
ACTA PHYSICA SINICA, 2012, 61 (16)
[50]   Continuity and inversion of the wavelet transform [J].
Pathak, RS .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) :85-93