Mexican hat wavelet transform of distributions

被引:20
作者
Pathak, R. S. [1 ]
Singh, Abhishek [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, DST Ctr Interdisciplinary Math Sci, Varanasi 221005, Uttar Pradesh, India
关键词
Distribution space; wavelet transform; Mexican hat wavelet; Weierstrass transform;
D O I
10.1080/10652469.2016.1155569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Theory of Weierstrass transform is exploited to derive many interesting new properties of the Mexican hat wavelet transform. A real inversion formula in the differential operator form for the Mexican hat wavelet transform is established. Mexican hat wavelet transform of distributions is defined and its properties are studied. An approximation property of the distributional wavelet transform is investigated which is supported by a nice example.
引用
收藏
页码:468 / 483
页数:16
相关论文
共 50 条
[31]   A novel wind turbine de-noising method based on the Genetic Algorithm optimal Mexican hat wavelet [J].
Liu, W. Y. ;
Gao, Q. W. ;
Zhang, Y. .
2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, :1003-1006
[32]   The optimal Mexican hat wavelet filter de-noising method based on cross-validation method [J].
Liu, W. Y. ;
Han, J. G. .
NEUROCOMPUTING, 2013, 108 :31-35
[33]   Illumination and noise tolerant face recognition based on eigen-phase correlation filter modified by Mexican hat wavelet [J].
Banerjee P.K. ;
Datta A.K. .
Journal of Optics, 2009, 38 (3) :160-168
[34]   Wavelet transform associated with Dunkl transform [J].
Prasad, Akhilesh ;
Verma, R. K. ;
Verma, S. K. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (09) :481-496
[35]   Dynamic scheduling of tasks in cloud computing applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat wavelet [J].
Mohammad Reza Shirani ;
Faramarz Safi-Esfahani .
The Journal of Supercomputing, 2021, 77 :1214-1272
[36]   Dynamic scheduling of tasks in cloud computing applying dragonfly algorithm, biogeography-based optimization algorithm and Mexican hat wavelet [J].
Shirani, Mohammad Reza ;
Safi-Esfahani, Faramarz .
JOURNAL OF SUPERCOMPUTING, 2021, 77 (02) :1214-1272
[37]   Continuous Wavelet Transform of Schwartz Distributions in D′L2(Rn), n ≥ 1 [J].
Pandey, Jagdish N. .
SYMMETRY-BASEL, 2021, 13 (07)
[38]   ON CONVOLUTION FOR WAVELET TRANSFORM [J].
Pathak, R. S. ;
Pathak, Ashish .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2008, 6 (05) :739-747
[39]   On the Wavelet Transform for Boehmians [J].
Abhishek Singh ;
Aparna Rawat ;
Shubha Singh ;
P. K. Banerji .
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 :331-336
[40]   On the Wavelet Transform for Boehmians [J].
Singh, Abhishek ;
Rawat, Aparna ;
Singh, Shubha ;
Banerji, P. K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (03) :331-336