On the sign consistency of the Lasso for the high-dimensional Cox model

被引:3
作者
Lv, Shaogao [1 ,2 ]
You, Mengying [1 ,2 ]
Lin, Huazhen [1 ,2 ]
Lian, Heng [3 ]
Huang, Jian [4 ,5 ]
机构
[1] Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu 611130, Sichuan, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[5] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
基金
中国国家自然科学基金;
关键词
Cox proportional; Empirical process; Hazard model; Lasso; Mutual coherence; Oracle property; Sparse recovery; VARIABLE SELECTION; INEQUALITIES; RECOVERY; SPARSITY;
D O I
10.1016/j.jmva.2018.04.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the l(1)-penalized partial likelihood estimator for the sparse high dimensional Cox proportional hazards model. In particular, we investigate how the l(1)-penalized partial likelihood estimation recovers the sparsity pattern and the conditions under which the sign support consistency is guaranteed. We establish sign recovery consistency and l(infinity)-error bounds for the Lasso partial likelihood estimator under suitable and interpretable conditions, including mutual incoherence conditions. More importantly, we show that the conditions of the incoherence and bounds on the minimal non-zero coefficients are necessary, which provides significant and instructional implications for understanding the Lasso for the Cox model. Numerical studies are presented to illustrate the theoretical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 30 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]  
[Anonymous], 1997, J. Oper. Res. Soc., DOI [10.1057/palgrave.jors.2600425, 10.1057/palgrave.jors.2600425.18, DOI 10.1057/PALGRAVE.JORS.2600425.18]
[3]   REGULARIZATION FOR COX'S PROPORTIONAL HAZARDS MODEL WITH NP-DIMENSIONALITY [J].
Bradic, Jelena ;
Fan, Jianqing ;
Jiang, Jiancheng .
ANNALS OF STATISTICS, 2011, 39 (06) :3092-3120
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]  
COX DR, 1972, J R STAT SOC B, V34, P187
[6]  
de la Peña VH, 1999, ANN PROBAB, V27, P537
[7]  
DeVore Ronald A., 1993, Constructive Approximation, V303
[8]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[9]   Tuning parameter selection in high dimensional penalized likelihood [J].
Fan, Yingying ;
Tang, Cheng Yong .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) :531-552
[10]   Testing and confidence intervals for high dimensional proportional hazards models [J].
Fang, Ethan X. ;
Ning, Yang ;
Liu, Han .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (05) :1415-1437