Stable metal-organic frameworks based mixed matrix membranes for Ethylbenzene/N2 separation

被引:21
|
作者
Guo, Zhenji [1 ]
Liu, Zhongyuan [1 ]
Zhang, Kai [1 ]
Wang, Wenwen [1 ]
Pang, Jia [2 ]
Li, Zongge [1 ]
Kang, Zixi [3 ,4 ]
Zhao, Dongfeng [1 ]
机构
[1] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Shandong, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[3] China Univ Petr East China, Sch Mat Sci & Engn, Qingdao 266580, Shandong, Peoples R China
[4] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Mixed matrix membranes; Volatile organic compounds; Ethylbenzene; Permselectivity; VAPOR-PHASE ADSORPTION; XYLENE ISOMERS; SURFACE-AREA; VOC REMOVAL; THIN-FILMS; AIR; PERFORMANCE; MIL-101(CR); ABSORPTION; TOLUENE;
D O I
10.1016/j.cej.2021.129193
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To remove volatile organic compounds (VOCs) from air, N-2 or other waste gas streams in industrial processes is significant to the environmental protection and human health, as well as gain the opportunity to reuse these valuable chemicals. Mixed matrix membranes (MMMs) based on metal-organic frameworks (MOFs) have been proved to have potential application in this field. In this work, MIL-101 and UiO-66 are selected to construct MMMs for efficient ethylbenzene separation because of following factors: (1) the high ethylbenzene adsorption capacities; (2) the three-dimensional channels with large pore size; and (3) the ideal hydrothermal stability of structures. MIL-101@Pebax and UiO-66@Pebax MMMs have been prepared in an environment-friendly way and evaluated for the ethylbenzene/N-2 separation performance. SEM, TGA, FITR and XRD results indicate that continuous MMMs with different filler loading ratios have been fabricated successfully. The results show that MIL-101@Pebax and UiO-66@Pebax with the MOF loading radio of 20 wt% possess ethylbenzene/N-2 permselectivity of 284 and 100 respectively at 25 degrees C, 0.05 MPa and moderate feed ethylbenzene concentration (1000 ppm), which increased by 10.5 and 3.0 times compared with the pristine Pebax membrane. Effects of upstream pressure, feed concentration, and operating temperature on separation performance have been investigated for ethylbenzene/N-2 separation. Due to the selective adsorption capacity to ethylbenzene, as well as the large pore size of MIL-101(Cr), MIL-101@Pebax can be applied as efficient membrane materials in ethylbenzene capture system for high concentration region at ambient temperature.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Decorated Traditional Zeolites with Subunits of Metal-Organic Frameworks for CH4/N2 Separation
    Wu, Yaqi
    Yuan, Danhua
    He, Dawei
    Xing, Jiacheng
    Zeng, Shu
    Xu, Shutao
    Xu, Yunpeng
    Liu, Zhongmin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (30) : 10241 - 10244
  • [42] A comprehensive review of metal-organic frameworks sorbents and their mixed-matrix membranes composites for biogas cleaning and CO2/ CH4 separation
    Duma, Zama
    Makgwane, Peter R.
    Masukume, Mike
    Swartbooi, Ashton
    Rambau, Khavharendwe
    Mehlo, Thembelihle
    Mavhungu, Tshidzani
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [43] Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67
    Kang, Miso
    Kim, Tea-Hoon
    Bae, Youn-Sang
    Kim, Jong Hak
    JOURNAL OF MEMBRANE SCIENCE, 2022, 659
  • [44] Mixed matrix membranes based on MIL-101 metal-organic frameworks in polymer of intrinsic microporosity PIM-1
    Khdhayyer, Muhanned
    Bushell, Alexandra F.
    Budd, Peter M.
    Attfield, Martin P.
    Jiang, Dongmei
    Burrows, Andrew D.
    Esposito, Elisa
    Bernardo, Paola
    Monteleone, Marcello
    Fuoco, Alessio
    Clarizia, Gabriele
    Bazzarelli, Fabio
    Gordano, Amalia
    Jansen, Johannes C.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 212 : 545 - 554
  • [45] PIM-based mixed matrix membranes containing covalent organic frameworks/ionic liquid composite materials for effective CO2/ N2 separation
    Chang, Qishuo
    Guo, Haiyan
    Shang, Zhijie
    Zhang, Cancan
    Zhang, Yanwu
    Dong, Guanying
    Shen, Bo
    Wang, Jing
    Zhang, Yatao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [46] Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation
    Cabrales-Navarro, Fredy A.
    Gomez-Ballesteros, Jose L.
    Balbuena, Perla B.
    JOURNAL OF MEMBRANE SCIENCE, 2013, 428 : 241 - 250
  • [47] Separation of CH4/N2 by an ultra-stable metal-organic framework with the highest breakthrough selectivity
    Chang, Miao
    Wang, Fei
    Wei, Yan
    Yang, Qingyuan
    Wang, Jie-Xin
    Liu, Dahuan
    Chen, Jian-Feng
    AICHE JOURNAL, 2022, 68 (09)
  • [48] High-Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation
    Daglar, Hilal
    Keskin, Seda
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (11)
  • [49] Affinity between Metal-Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations
    Ren, Huiqing
    Jin, Jiaying
    Hu, Jun
    Liu, Honglai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (30) : 10156 - 10164
  • [50] Enhancement of permittivity in P(VDF-CTFE)/metal-organic frameworks mixed matrix membranes
    Jia, Qin-Xiang
    Yang, Dan-Hong
    Jin, Li
    Zhang, Zhicheng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (47)