EXISTENCE RESULTS IN THE LINEAR DYNAMICS OF QUASICRYSTALS WITH PHASON DIFFUSION AND NONLINEAR GYROSCOPIC EFFECTS

被引:12
|
作者
Bisconti, Luca [1 ]
Mariano, Paolo Maria [2 ]
机构
[1] Univ Florence, DiMaI U Dini, Vle Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Florence, DiCeA, V Santa Marta 3, I-50139 Florence, Italy
来源
MULTISCALE MODELING & SIMULATION | 2017年 / 15卷 / 02期
关键词
continuum mechanics; quasicrystals; dynamics; gyroscopic phason inertia; existence theorems; ELASTICITY; MECHANICS; DISLOCATIONS; CRACK;
D O I
10.1137/15M1049580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasicrystals are characterized by quasi-periodic arrangements of atoms. The description of their mechanics involves deformation and a (so-called phason) vector field accounting at macroscopic scale for local phase changes, due to atomic flips necessary to match quasi periodicity under the action of the external environment. Here we discuss the mechanics of quasicrystals, commenting on a shift from its initial formulation, as standard elasticity in a space with dimension twice the ambient one, to a more elaborated setting, which seems to account more deeply for the physics at hand. In the new setting we tackle two problems. First we discuss the linear dynamics of quasicrystals including a phason diffusion. We prove existence of weak solutions and their uniqueness under rather general boundary and initial conditions. We then consider phason rotational inertia, nonlinearly coupled with the curl of the macroscopic velocity, and prove once again existence of weak solutions to the pertinent balance equations.
引用
收藏
页码:745 / 767
页数:23
相关论文
共 47 条
  • [1] Phason dynamics in nonlinear photonic quasicrystals
    Freedman, Barak
    Lifshitz, Ron
    Fleischer, Jason W.
    Segev, Mordechai
    NATURE MATERIALS, 2007, 6 (10) : 776 - 781
  • [2] Phason dynamics in nonlinear photonic quasicrystals
    Barak Freedman
    Ron Lifshitz
    Jason W. Fleischer
    Mordechai Segev
    Nature Materials, 2007, 6 : 776 - 781
  • [3] Dynamics of phason diffusion in icosahedral Al-Pd-Mn quasicrystals
    Feuerbacher, M.
    Caillard, D.
    ACTA MATERIALIA, 2006, 54 (12) : 3233 - 3240
  • [4] Modeling the Dynamics of a Gyroscopic Rigid Rotor with Linear and Nonlinear Damping and Nonlinear Stiffness of the Elastic Support
    Iskakov, Zharilkassin
    Bissembayev, Kuatbay
    Jamalov, Nutpulla
    Abduraimov, Azizbek
    MACHINES, 2021, 9 (11)
  • [5] One dimensional resonant Fibonacci quasicrystals: noncanonical linear and canonical nonlinear effects
    Werchner, M.
    Schafer, M.
    Kira, M.
    Koch, S. W.
    Sweet, J.
    Olitzky, J. D.
    Hendrickson, J.
    Richards, B. C.
    Khitrova, G.
    Gibbs, H. M.
    Poddubny, A. N.
    Ivchenko, E. L.
    Voronov, M.
    Wegener, M.
    OPTICS EXPRESS, 2009, 17 (08): : 6813 - 6828
  • [6] Existence and uniqueness results for a time-fractional nonlinear diffusion equation
    Plociniczak, Lukasz
    Switala, Mateusz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1425 - 1434
  • [7] Existence and Blow-up Results for Fast Diffusion Equations with Nonlinear Sources
    Giachetti, Daniela
    Porzio, Maria Michaela
    ADVANCED NONLINEAR STUDIES, 2010, 10 (01) : 131 - 160
  • [8] Global existence and convergence results for a class of nonlinear time fractional diffusion equation
    Huy Tuan, Nguyen
    NONLINEARITY, 2023, 36 (10) : 5144 - 5189
  • [9] The global existence of nonlinear observers with linear error dynamics: A topological point of view
    Xiao, MingQing
    SYSTEMS & CONTROL LETTERS, 2006, 55 (10) : 849 - 858
  • [10] Diffusion effects in nonlinear dynamics of hepatitis B virus
    Issa, S.
    Tamko, B. Mbopda
    Dabole, B.
    Tabi, C. B.
    Ekobena, H. P. Fouda
    PHYSICA SCRIPTA, 2021, 96 (10)