On noncommultative multi-solitons

被引:38
作者
Gopakumar, R [1 ]
Headrick, M [1 ]
Spradlin, M [1 ]
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
关键词
D O I
10.1007/s00220-002-0734-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find the moduli space of multi-solitons in noncommutative scalar field theories at large 0, in arbitrary dimension. The existence of a non-trivial moduli space at leading order in 1/theta is a consequence of a Bogomolnyi. bound obeyed by the kinetic energy of the theta = infinity solitons. In two spatial dimensions, the parameter space for k solitons is a Kahler de-singularization of the symmetric product (R-2)(k)/S-k. We exploit the existence of this moduli space to construct solitons on quotient spaces of the plane: R-2/Z(k), cylinder, and T-2. However, we show that tori of area less than or equal to 2pitheta do not admit stable solitons. In four dimensions the moduli space provides an explicit Kahler resolution of (R-4)(k)/S-k. In general spatial dimension 2d, we show it is isomorphic to the Hilbert scheme of k points in C-d, which for d > 2 (and k > 3) is not smooth and can have multiple branches.
引用
收藏
页码:355 / 381
页数:27
相关论文
共 41 条
[1]  
Aganagic M, 2001, J HIGH ENERGY PHYS
[2]   PROOF OF COMPLETENESS OF LATTICE STATES IN KQ REPRESENTATION [J].
BACRY, H ;
GROSSMANN, A ;
ZAK, J .
PHYSICAL REVIEW B, 1975, 12 (04) :1118-1120
[3]   Elongation of moving noncommutative solitons [J].
Bak, D ;
Lee, K .
PHYSICS LETTERS B, 2000, 495 (1-2) :231-236
[4]   Exact solutions of multi-vortices and false vacuum bubbles in noncommutative Abelian-Higgs theories [J].
Bak, D .
PHYSICS LETTERS B, 2000, 495 (1-2) :251-255
[5]  
BAK D, HEPTH0011099
[6]  
Bargmann V., 1971, Reports on Mathematical Physics, V2, P221, DOI 10.1016/0034-4877(71)90006-1
[7]   Tachyon condensation on a noncommutative torus [J].
Bars, I ;
Kajiura, H ;
Matsuo, Y ;
Takayanagi, T .
PHYSICAL REVIEW D, 2001, 63 (08)
[8]  
BRADEN HW, HEPTH0103204
[9]  
Dasgupta K, 2000, J HIGH ENERGY PHYS
[10]   Noncommutative scalar solitons: existence and nonexistence [J].
Durhuus, B ;
Jonsson, T ;
Nest, R .
PHYSICS LETTERS B, 2001, 500 (3-4) :320-325