On rational approximation to e

被引:5
作者
Alzer, H
机构
[1] Morsbacher Str. 10
关键词
D O I
10.1006/jnth.1997.2199
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove: The inequality \e - p/q\ greater than or equal to c(1) log log q/q(2) log q holds for all positive integers p and q with g greater than or equal to 2, if and only if c(1) less than or equal to 0.386249199819.... And, the reverse inequality \e - p/q\ < c(2) log log q/q(2) log q has infinitely many solutions in integers p, q, if and only if c(2) greater than or equal to 1/2. (C) 1998 Academic Press.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 10 条
[1]   IRRATIONALITY MEASUREMENT FOR EA,A=0 RATIONAL OR LIOUVILLE NUMBER [J].
BUNDSCHUH, P .
MATHEMATISCHE ANNALEN, 1971, 192 (03) :229-+
[2]  
Davis C. S., 1978, J AUSTR MATH SOC A, V25, P497
[3]  
KAPPE L.-C., 1966, Ann. Univ. Sci. Budap. Rolando Eotvos, Sect. Math., V9, P3
[4]  
Lang S., 1966, Introduction to Diophantine approximations
[5]  
Mahler K, 1932, J REINE ANGEW MATH, V166, P137
[6]  
Mahler K, 1932, J REINE ANGEW MATH, V166, P118
[7]  
Mitrinovic D. S., 1970, Analytic Inequalities, V1
[8]  
Okano, 1992, TOKYO J MATH, V15, P129
[9]  
Schneider T, 1957, EINFUHRUNG TRANSZEND
[10]  
SIEGEL CL, 1929, ABH PREUSS AKAD WISS, V1