Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

被引:56
作者
Axt, Amelie [1 ,2 ]
Hermes, Ilka M. [1 ]
Bergmann, Victor W. [1 ]
Tausendpfund, Niklas [2 ]
Weber, Stefan A. L. [1 ,2 ]
机构
[1] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
AM-KPFM; AM lift mode; AM off resonance; AM second eigenmode; cross section; crosstalk; field effect transistor; FM-KPFM; frequency modulation heterodyne; frequency modulation sideband; quantitative Kelvin probe force microscopy; solar cells; PEROVSKITE SOLAR-CELLS; CHARGE-DISTRIBUTION; NANOMETER-SCALE; POTENTIOMETRY; REAL;
D O I
10.3762/bjnano.9.172
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative different KPFM methods can measure a predefined externally applied voltage difference between the electrodes. We found that generally, FM-KPFM methods provide more quantitative results that are less affected by the presence of stray electric fields compared to AM-KPFM methods.
引用
收藏
页码:1809 / 1819
页数:11
相关论文
共 43 条
[1]   Electrical characterization of organic solar cell materials based on scanning force microscopy [J].
Berger, Ruediger ;
Domanski, Anna L. ;
Weber, Stefan A. L. .
EUROPEAN POLYMER JOURNAL, 2013, 49 (08) :1907-1915
[2]   Local Time-Dependent Charging in a Perovskite Solar Cell [J].
Bergmann, Victor W. ;
Guo, Yunlong ;
Tanaka, Hideyuki ;
Hermes, Ilka M. ;
Li, Dan ;
Klasen, Alexander ;
Bretschneider, Simon A. ;
Nakamura, Eiichi ;
Berger, Riidiger ;
Weber, Stefan A. L. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (30) :19402-19409
[3]   Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell [J].
Bergmann, Victor W. ;
Weber, Stefan A. L. ;
Javier Ramos, F. ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael ;
Li, Dan ;
Domanski, Anna L. ;
Lieberwirth, Ingo ;
Ahmad, Shahzada ;
Berger, Ruediger .
NATURE COMMUNICATIONS, 2014, 5
[4]   Intermodulation electrostatic force microscopy for imaging surface photo-voltage [J].
Borgani, Riccardo ;
Forchheimer, Daniel ;
Bergqvist, Jonas ;
Thoren, Per-Anders ;
Inganas, Olle ;
Haviland, David B. .
APPLIED PHYSICS LETTERS, 2014, 105 (14)
[5]   PHOTOELECTRIC DETERMINATION OF WORK FUNCTION OF GOLD-PLATINUM ALLOYS [J].
BOUWMAN, R ;
SACHTLER, WM .
JOURNAL OF CATALYSIS, 1970, 19 (02) :127-&
[6]   Noncontact potentiometry of polymer field-effect transistors [J].
Bürgi, L ;
Sirringhaus, H ;
Friend, RH .
APPLIED PHYSICS LETTERS, 2002, 80 (16) :2913-2915
[7]   Fuzzy prototype classifier based on items and its application in recommender system [J].
Cai, Mei ;
Gong, Zaiwu ;
Li, Yan .
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) :1016-1035
[8]   Real versus measured surface potentials in scanning Kelvin probe microscopy [J].
Charrier, Dimitri S. H. ;
Kemerink, Martijn ;
Smalbrugge, Barry E. ;
de Vries, Tjibbe ;
Janssen, Rene A. J. .
ACS NANO, 2008, 2 (04) :622-626
[9]   Energy band alignment in operando inverted structure P3HT:PCBM organic solar cells [J].
Chen, Qi ;
Ye, Fengye ;
Lai, Junqi ;
Dai, Pan ;
Lu, Shulong ;
Ma, Changqi ;
Zhao, Yanfei ;
Xie, Yi ;
Chen, Liwei .
NANO ENERGY, 2017, 40 :454-461
[10]   Resolution enhancement and improved data interpretation in electrostatic force microscopy -: art. no. 245403 [J].
Colchero, J ;
Gil, A ;
Baró, AM .
PHYSICAL REVIEW B, 2001, 64 (24)