P-Partitions and Quasisymmetric Power Sums

被引:3
作者
Liu, Ricky Ini [1 ]
Weselcouch, Michael [1 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
EQUALITY;
D O I
10.1093/imrn/rnz375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The (P, omega)-partition generating function of a labeled poset (P, omega) is a quasisymmetric function enumerating certain order-preserving maps from P to Z(+). We study the expansion of this generating function in the recently introduced type 1 quasisymmetric power sum basis {psi(alpha)}. Using this expansion, we show that connected, naturally labeled posets have irreducible P-partition generating functions. We also show that series-parallel posets are uniquely determined by their partition generating functions. We conclude by giving a combinatorial interpretation for the coefficients of the psi(alpha)-expansion of the (P, omega)-partition generating function akin to the Murnaghan-Nakayama rule.
引用
收藏
页码:12707 / 12747
页数:41
相关论文
共 22 条
[1]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[2]   P-Partitions and p-Positivity [J].
Alexandersson, Per ;
Sulzgruber, Robin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (14) :10848-10907
[3]  
Ballantine C., 2017, PREPRINT ARXIV171011
[4]   Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions [J].
Billera, Louis J. ;
Thomas, Hugh ;
van Willigenburg, Stephanie .
ADVANCES IN MATHEMATICS, 2006, 204 (01) :204-240
[5]   NONCOMMUTATIVE SYMMETRICAL FUNCTIONS [J].
GELFAND, IM ;
KROB, D ;
LASCOUX, A ;
LECLERC, B ;
RETAKH, VS ;
THIBON, JY .
ADVANCES IN MATHEMATICS, 1995, 112 (02) :218-348
[6]  
GESSEL I, 1984, CONT MATH, V34, P289
[7]  
Grinberg D., 2014, PREPRINT ARXIV140983
[8]   Order quasisymmetric functions distinguish rooted trees [J].
Hasebe, Takahiro ;
Tsujie, Shuhei .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (3-4) :499-515
[9]   The algebra of quasi-symmetric functions is free over the integers [J].
Hazewinkel, M .
ADVANCES IN MATHEMATICS, 2001, 164 (02) :283-300
[10]   P-partition products and fundamental quasi-symmetric function positivity [J].
Lam, Thomas ;
Pylyavskyy, Pavlo .
ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (03) :271-294