Braiding operators are universal quantum gates

被引:168
作者
Kauffman, LH
Lomonaco, SJ
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/1367-2630/6/1/134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper explores the role of unitary braiding operators in quantum computing. We show that a single specific solution R (the Bell basis change matrix) of the Yang-Baxter equation is a universal gate for quantum computing, in the presence of local unitary transformations. We show that this same R generates a new non-trivial invariant of braids, knots and links. Other solutions of the Yang Baxter equation are also shown to be universal for quantum computation. The paper discusses these results in the context of comparing quantum and topological points of view. In particular, we discuss quantum computation of link invariants, the relationship between quantum entanglement and topological entanglement, and the structure of braiding in a topological quantum field theory.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 51 条
[1]  
[Anonymous], 1997, POTENTIALITY ENTANGL
[2]  
[Anonymous], 1940, COMPUTATIONAL PROBLE, DOI DOI 10.1016/B978-0-08-012975-4.50034-5
[3]  
Atiyah M., 1990, GEOMETRY PHYS KNOTS
[4]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[5]  
Birman J.S., 1976, ANN MATH STUDIES, V82
[6]  
BORDEWICH M, 2004, IN PRESS COMBIN PROB
[7]   Practical scheme for quantum computation with any two-qubit entangling gate [J].
Bremner, MJ ;
Dawson, CM ;
Dodd, JL ;
Gilchrist, A ;
Harrow, AW ;
Mortimer, D ;
Nielsen, MA ;
Osborne, TJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (24)
[8]  
Brylinski J.-L., 2002, MATH QUANTUM COMPUTA, P117
[9]  
CARTERET HA, UNPUB
[10]   2-D PHYSICS AND 3-D TOPOLOGY [J].
CRANE, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :615-640