Generalized Multilevel Functional Regression

被引:106
作者
Crainiceanu, Ciprian M. [1 ]
Staicu, Ana-Maria [2 ]
Di, Chong-Zhi [3 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[2] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Fred Hutchinson Canc Res Ctr, Biostat Program, Seattle, WA 98109 USA
关键词
Functional principal components; Sleep EEG; Smoothing; QUASI-LIKELIHOOD REGRESSION; VARIABLE SELECTION; LINEAR-MODELS; RATIO TESTS; DISTRIBUTIONS;
D O I
10.1198/jasa.2009.tm08564
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce Generalized Multilevel Functional Linear Models (GMFLMs), a novel statistical framework for regression models where exposure has a multilevel functional structure. We show that GMFLMs are, in fact, generalized multilevel mixed models. Thus, GMFLMs can be analyzed using the mixed effects inferential machinery and can be generalized within a well-researched statistical framework. We propose and compare two methods for inference: (1) a two-stage frequentist approach: and (2) a joint Bayesian analysis. Our methods are motivated by and applied to the Sleep Heart Health Study, the largest community cohort study of sleep. However, our methods are general and easy to apply to a wide spectrum of emerging biological and medical datasets. Supplemental materials for this article are available online.
引用
收藏
页码:1550 / 1561
页数:12
相关论文
共 47 条
[1]   MAXIMUM LIKELIHOOD IDENTIFICATION OF GAUSSIAN AUTOREGRESSIVE MOVING AVERAGE MODELS [J].
AKAIKE, H .
BIOMETRIKA, 1973, 60 (02) :255-265
[2]  
[Anonymous], 2003, Bayesian data analysis
[3]   Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis [J].
Baladandayuthapani, Veerabhadran ;
Mallick, Bani K. ;
Hong, Mee Young ;
Lupton, Joanne R. ;
Turner, Nancy D. ;
Carroll, Raymond J. .
BIOMETRICS, 2008, 64 (01) :64-73
[4]  
Bilodeau M., 1999, THEORY MULTIVARIATE
[5]  
CARLIN B. P., 2000, C&H TEXT STAT SCI
[6]  
Carroll R. J., 2006, MEASUREMENT ERROR NO, DOI DOI 10.1201/9781420010138
[7]   Functional quasi-likelihood regression models with smooth random effects [J].
Chiou, JM ;
Müller, HG ;
Wang, JL .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :405-423
[8]  
Chiou JM, 1998, J AM STAT ASSOC, V93, P1376
[9]  
Congdon P., 2003, Applied Bayesian modelling
[10]   Exact likelihood ratio tests for penalised splines [J].
Crainiceanu, C ;
Ruppert, D ;
Claeskens, G ;
Wand, MP .
BIOMETRIKA, 2005, 92 (01) :91-103