Determining identifiable parameter combinations using subset profiling

被引:74
作者
Eisenberg, Marisa C. [1 ,2 ]
Hayashi, Michael A. L. [1 ]
机构
[1] Univ Michigan, Sch Publ Hlth, Dept Epidemiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Identifiability; Mathematical modeling; Parameter estimation; Fisher Information Matrix; Profile likelihood; NONLINEAR ODE MODELS; SIMILARITY TRANSFORMATION APPROACH; GLOBAL IDENTIFIABILITY; PRACTICAL IDENTIFIABILITY; DYNAMICAL MODELS; SYSTEMS; LIKELIHOOD; REPARAMETERISATIONS; IDENTIFICATION; EXTENSIONS;
D O I
10.1016/j.mbs.2014.08.008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be experimentally measured to recover model identifiability. Several numerical approaches to determining identifiability of differential equation models have been developed, however the question of determining identifiable combinations remains incompletely addressed. In this paper, we present a new approach which uses parameter subset selection methods based on the Fisher Information Matrix, together with the profile likelihood, to effectively estimate identifiable combinations. We demonstrate this approach on several example models in pharmacokinetics, cellular biology, and physiology. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 126
页数:11
相关论文
共 44 条
  • [1] Global identifiability of nonlinear models of biological systems
    Audoly, S
    Bellu, G
    D'Angiò, L
    Saccomani, MP
    Cobelli, C
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (01) : 55 - 65
  • [2] An iterative identification procedure for dynamic modeling of biochemical networks
    Balsa-Canto, Eva
    Alonso, Antonio A.
    Banga, Julio R.
    [J]. BMC SYSTEMS BIOLOGY, 2010, 4
  • [3] SAAM II: Simulation, Analysis, and Modeling Software for tracer and pharmacokinetic studies
    Barrett, PHR
    Bell, BM
    Cobelli, C
    Golde, H
    Schumitzky, A
    Vicini, P
    Foster, DM
    [J]. METABOLISM-CLINICAL AND EXPERIMENTAL, 1998, 47 (04): : 484 - 492
  • [4] BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X
  • [5] DAISY:: A new software tool to test global identifiability of biological and physiological systems
    Bellu, Giuseppina
    Saccomani, Maria Pia
    Audoly, Stefania
    D'Angio, Leontina
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (01) : 52 - 61
  • [6] A procedure for generating locally identifiable reparameterisations of unidentifiable non-linear systems by the similarity transformation approach
    Chappell, MJ
    Gunn, RN
    [J]. MATHEMATICAL BIOSCIENCES, 1998, 148 (01) : 21 - 41
  • [7] Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods
    Chis, Oana-Teodora
    Banga, Julio R.
    Balsa-Canto, Eva
    [J]. PLOS ONE, 2011, 6 (11):
  • [8] Cintron-Arias A., 2009, J INVERSE ILL-POSE P, V17, P1
  • [9] Cobelli C., 1980, AM J PHYSIOL-REG I, V239, pR7
  • [10] Determining the parametric structure of models
    Cole, D. J.
    Morgan, B. J. T.
    Titterington, D. M.
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 228 (01) : 16 - 30