Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data

被引:3
作者
Bertino, Enrico [1 ]
Duvigneau, Regis [2 ]
Goatin, Paola [2 ]
机构
[1] Politecn Milan, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Cote dAzur, Inria Sophia Antipolis Mediterranee, INRIA, CNRS,LJAD, 2004 Route Lucioles BP 93, F-06902 Sophia Antipolis, France
关键词
macroscopic traffic flow models; stochastic conservation laws; uncertainty quantification; stochastic parameters; real data; HYPERBOLIC CONSERVATION-LAWS; STOCHASTIC-MODEL; KINEMATIC WAVES;
D O I
10.3934/mbe.2020078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by AUTOROUTES TRAFIC.
引用
收藏
页码:1511 / 1533
页数:23
相关论文
共 28 条
[1]   A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems [J].
Abgrall, Remi ;
Congedo, Pietro Marco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :828-845
[2]   A compositional stochastic model for real time freeway traffic simulation [J].
Boel, R ;
Mihaylova, L .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2006, 40 (04) :319-334
[3]   ON SCALAR HYPERBOLIC CONSERVATION LAWS WITH A DISCONTINUOUS FLUX [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (01) :89-113
[4]  
Cabassi A., 2013, RR8382 INRIA
[5]   A Fluid Dynamic Approach for Traffic Forecast from Mobile Sensor Data [J].
Cristiani, Emiliano ;
de Fabritiis, Corrado ;
Piccoli, Benedetto .
COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2010, 1 (01) :54-71
[6]   THE CELL TRANSMISSION MODEL - A DYNAMIC REPRESENTATION OF HIGHWAY TRAFFIC CONSISTENT WITH THE HYDRODYNAMIC THEORY [J].
DAGANZO, CF .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1994, 28 (04) :269-287
[7]   Solutions to a scalar discontinuous conservation law in a limit case of phase transitions [J].
Dias, JP ;
Figueira, M ;
Rodrigues, JF .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (02) :153-163
[8]  
Garavello M., 2006, Traffic Flow on Networks, V1
[9]   CONSERVATION-LAWS WITH DISCONTINUOUS FLUX FUNCTIONS [J].
GIMSE, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (02) :279-289
[10]  
Godunov Sergei K, 1959, Matematicheskii Sbornik, V47, P271