Singular boundary value problems for the p-Laplacian

被引:10
作者
Hai, D. D. [1 ]
机构
[1] Mississippi State Univ, Dept Math, Mississippi State, MS 39762 USA
关键词
p-Laplace; Singular BVP; Positive solutions; QUASILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; SOBOLEV;
D O I
10.1016/j.na.2010.06.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of a large positive solution for the boundary value problems {-Delta(p)u = lambda(-h(u) + g(x, u)) in Omega, u = 0 on partial derivative Omega, where Delta(p)u = div(vertical bar del u vertical bar(p-2)del u), p > 1, Omega is a bounded domain in R(N), lambda is a positive parameter, g(x, .) is (p - 1)-subhomogeneous at infinity, and h is allowed to become infinity at u = 0. Results for related systems are also discussed (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2876 / 2881
页数:6
相关论文
共 9 条