Localization of massless Dirac particles via spatial modulations of the Fermi velocity

被引:49
作者
Downing, C. A. [1 ]
Portnoi, M. E. [2 ,3 ]
机构
[1] Univ Strasbourg, CNRS, Inst Phys & Chim Mat Strasbourg, UMR 7504, F-67000 Strasbourg, France
[2] Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England
[3] Univ Fed Rio Grande do Norte, Int Inst Phys, BR-59078970 Natal, RN, Brazil
关键词
massless Dirac fermions; Fermi velocity engineering; exactly solvable models; GRAPHENE QUANTUM DOTS; ELECTRONIC-STRUCTURE; BARRIER; MODES;
D O I
10.1088/1361-648X/aa7884
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two- dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (onedimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.
引用
收藏
页数:8
相关论文
共 63 条
[1]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[2]   Electrostatic Confinement of Electrons in an Integrable Graphene Quantum Dot [J].
Bardarson, J. H. ;
Titov, M. ;
Brouwer, P. W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[3]   Quantum Goos-Hanchen Effect in Graphene [J].
Beenakker, C. W. J. ;
Sepkhanov, R. A. ;
Akhmerov, A. R. ;
Tworzydlo, J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (14)
[4]   Topological Transition of Dirac Points in a Microwave Experiment [J].
Bellec, Matthieu ;
Kuhl, Ulrich ;
Montambaux, Gilles ;
Mortessagne, Fabrice .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)
[5]   Control over band structure and tunneling in bilayer graphene induced by velocity engineering [J].
Cheraghchi, Hosein ;
Adinehvand, Fatemeh .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (01)
[6]  
Cole EAB, 2009, MATHEMATICAL AND NUMERICAL MODELLING OF HETEROSTRUCTURE SEMICONDUCTOR DEVICES: FROM THEORY TO PROGRAMMING, P1, DOI 10.1007/978-1-84882-937-4
[7]   Effect of a velocity barrier on the ballistic transport of Dirac fermions [J].
Concha, A. ;
Tesanovic, Z. .
PHYSICAL REVIEW B, 2010, 82 (03)
[8]   Charge inhomogeneities due to smooth ripples in graphene sheets [J].
de Juan, Fernando ;
Cortijo, Alberto ;
Vozmediano, Maria A. H. .
PHYSICAL REVIEW B, 2007, 76 (16)
[9]   Space Dependent Fermi Velocity in Strained Graphene [J].
de Juan, Fernando ;
Sturla, Mauricio ;
Vozmediano, Maria A. H. .
PHYSICAL REVIEW LETTERS, 2012, 108 (22)
[10]   Magnetic confinement of massless Dirac fermions in graphene [J].
De Martino, A. ;
Dell'Anna, L. ;
Egger, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)