The strongest EI Nino event stimulated ecosystem respiration, not evapotranspiration, over a humid alpine meadow on the Qinghai-Tibetan Plateau

被引:14
|
作者
Li, Hongqin [1 ,2 ]
Zhang, Fawei [1 ,2 ,3 ]
Wang, Wenying [4 ]
Li, Yikang [2 ]
Lin, Li [2 ]
Wang, Junbang [5 ]
Guo, Xiaowei [2 ]
Cao, Guangmin [2 ]
Yang, Yongsheng [2 ]
Li, Yingnian [2 ]
机构
[1] Luoyang Normal Univ, Coll Life Sci, Luoyang 471934, Henan, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810001, Qinghai, Peoples R China
[3] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Prov Key Lab Restorat Ecol Cold Reg, Xining 810001, Qinghai, Peoples R China
[4] Qinghai Normal Univ, Coll Life & Geog Sci, Xining 810008, Qinghai, Peoples R China
[5] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Gross primary production; Ecosystem respiration; Evapotranspiration; Eddy covariance technique; Extreme events; Alpine meadow; INTERANNUAL VARIATIONS; PRIMARY PRODUCTIVITY; ENERGY-EXCHANGE; CO2; EXCHANGE; EL-NINO; GRASSLAND; CARBON; DROUGHT; HEAT; AVAILABILITY;
D O I
10.1016/j.ecolind.2018.04.039
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Frequent EI Nino events have worldwide impacts, but their effects on carbon and water budgets in alpine grasslands have been poorly explored. The responses of carbon and water vapor exchanges, monitored by the eddy covariance techniques, to the strongest EI Nino event in 2015/2016 were investigated over a humid alpine meadow on the Northeastern Qinghai-Tibetan Plateau. Monthly air temperature (T-a) in August could be considered as a clear indicator of this event and was elevated by 44% (by 4.0 degrees C) in 2016, mainly due to a 204% (5.2 degrees C) increase in daily minimum To. On a diurnal scale, a paired-samples T-test between the El Nino duration (August in 2016) and the reference period (August in 2014 and 2015) revealed that the El Nino-induced increase in gross primary production (GPP, 0.078 gCm(-2).h(-1)) was lower than the growth in ecosystem respiration (RES, 0.12 gC.m(-2).h(-1)), resulting in an increase in net ecosystem CO2 exchange (NEE, 0.079 gC.m(-2).h(-1)). Diurnal evapotranspiration (ET) was significantly increased, by 8.6%, at a rate of 0.011 mm.h(-1). On a monthly scale, this ecosystem fixed less carbon by 58.7 g C.m(-2).month(-1) while ET water losses increased by only 6.2 mm.month(-1) in August. The alpine meadow thus acted as a carbon sink with a 36.2 g C.m(-2).year(-1) influx in 2015, but switched to a carbon source with a 21.6 g C.m(-2)year(-1) efflux in 2016, mainly due to a 78.7 g C.m(-2).year(-1) increase in RES. Annual ET increased by less 3%. The divergent responses of CO2 and H2O fluxes were mostly attributed to a great increase only in nocturnal To, which instantaneously stimulated RES but not ET. Our findings revealed that extreme nocturnal warming led to greater carbon losses and weaker compensatory carbon gains, highlighting the inconsistent response of carbon dynamics to gradual warming and to exceptional warmth in humid alpine meadows.
引用
收藏
页码:562 / 569
页数:8
相关论文
共 50 条
  • [21] Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau
    Li Wen
    Wang Jinlan
    Zhang Xiaojiao
    Shi Shangli
    Cao Wenxia
    ECOLOGICAL ENGINEERING, 2018, 111 : 134 - 142
  • [22] A comparison of two photosynthesis parameterization schemes for an alpine meadow site on the Qinghai-Tibetan Plateau
    Xufeng Wang
    Guodong Cheng
    Xin Li
    Ling Lu
    Mingguo Ma
    Peixi Su
    Gaofeng Zhu
    Junlei Tan
    Theoretical and Applied Climatology, 2016, 126 : 751 - 764
  • [23] Seasonal variations in carbon dioxide exchange in an alpine wetland meadow on the Qinghai-Tibetan Plateau
    Zhao, L.
    Li, J.
    Xu, S.
    Zhou, H.
    Li, Y.
    Gu, S.
    Zhao, X.
    BIOGEOSCIENCES, 2010, 7 (04) : 1207 - 1221
  • [24] Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau
    Zeng, Chen
    Zhang, Fan
    Wang, Quanjiu
    Chen, Yingying
    Joswiak, Daniel R.
    JOURNAL OF HYDROLOGY, 2013, 478 : 148 - 156
  • [25] Effects of Patchiness on Soil Properties and Degradation of Alpine Meadow on the Qinghai-Tibetan Plateau
    Zhang, Wei
    Yi, Shuhua
    Qin, Yu
    Zhang, Jinglin
    LAND, 2024, 13 (10)
  • [26] Scaling effects on landscape metrics in alpine meadow on the central Qinghai-Tibetan Plateau
    Zhang, Wei
    Zhang, Jinglin
    GLOBAL ECOLOGY AND CONSERVATION, 2021, 29
  • [27] Evapotranspiration and Its Partitioning in Alpine Meadow of Three-River Source Region on the Qinghai-Tibetan Plateau
    Zhang, Lifeng
    Chen, Zhiguang
    Zhang, Xiang
    Zhao, Liang
    Li, Qi
    Chen, Dongdong
    Tang, Yanhong
    Gu, Song
    WATER, 2021, 13 (15)
  • [28] Impacts of alpine shrub-meadow degradation on its ecosystem services and spatial patterns in Qinghai-Tibetan Plateau
    Qian, Dawen
    Du, Yangong
    Li, Qian
    Guo, Xiaowei
    Fan, Bo
    Cao, Guangmin
    ECOLOGICAL INDICATORS, 2022, 135
  • [29] Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau
    Lin, Xingwu
    Zhang, Zhenhua
    Wang, Shiping
    Hu, Yigang
    Xu, Guangping
    Luo, Caiyun
    Chang, Xiaofeng
    Duan, Jichuang
    Lin, Qiaoyan
    Xu, Burenbayin
    Wang, Yanfen
    Zhao, Xinquan
    Xie, Zubin
    AGRICULTURAL AND FOREST METEOROLOGY, 2011, 151 (07) : 792 - 802
  • [30] Ecosystem Service Relationships, Drivers, and Regulation Strategies in a Degraded Alpine Shrub Meadow on the Northeastern Qinghai-Tibetan Plateau
    Qian, Dawen
    Fan, Bo
    Lan, Yuting
    Si, Mengke
    Li, Qian
    Guo, Xiaowei
    DIVERSITY-BASEL, 2023, 15 (05):