Permanence of hybrid competitive Lotka-Volterra system with Levy noise

被引:3
作者
Wang, Sheng [1 ]
Hu, Guixin [1 ]
Wei, Tengda [2 ]
Wang, Linshan [3 ,4 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Henan, Peoples R China
[2] Ocean Univ China, Coll Ocean & Atmospher Sci, Qingdao 266071, Peoples R China
[3] Liaocheng Univ, Sch Math, Liaocheng 252000, Shandong, Peoples R China
[4] Ocean Univ China, Sch Math, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic population system; Markov chain; Levy noise; Stochastic permanence; STOCHASTIC POPULATION-DYNAMICS; PREDATOR-PREY SYSTEM; MODEL; BEHAVIOR;
D O I
10.1016/j.physa.2019.123116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper concerns stochastic permanence of a hybrid competitive Lotka-Volterra system with Levy noise. Sufficient conditions of stochastic permanence are obtained by combining stochastic analytical techniques with M-matrix analysis. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2006, Stochastic Differential Equations with Markovian Switching, DOI [10.1142/p473, DOI 10.1142/P473]
[2]   Stochastic population dynamics driven by Levy noise [J].
Bao, Jianhai ;
Yuan, Chenggui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (02) :363-375
[3]   Competitive Lotka-Volterra population dynamics with jumps [J].
Bao, Jianhai ;
Mao, Xuerong ;
Yin, Geroge ;
Yuan, Chenggui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6601-6616
[4]   Stochastic Lotka-Volterra models with multiple delays [J].
Hu, Yangzi ;
Wu, Fuke ;
Huang, Chengming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :42-57
[5]   Analysis of autonomous Lotka-Volterra competition systems with random perturbation [J].
Jiang, Daqing ;
Ji, Chunyan ;
Li, Xiaoyue ;
O'Regan, Donal .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) :582-595
[6]   Stochastic competitive Lotka-Volterra ecosystems under partial observation: Feedback controls for permanence and extinction [J].
Ky Tran ;
Yin, G. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (08) :4039-4064
[7]   Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching [J].
Li, Xiaoyue ;
Gray, Alison ;
Jiang, Daqing ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (01) :11-28
[8]   POPULATION DYNAMICAL BEHAVIOR OF NON-AUTONOMOUS LOTKA-VOLTERRA COMPETITIVE SYSTEM WITH RANDOM PERTURBATION [J].
Li, Xiaoyue ;
Mao, Xuerong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :523-545
[9]   Analysis of a stochastic logistic model with diffusion [J].
Liu, Meng ;
Deng, Meiling ;
Du, Bo .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :169-182
[10]   Stochastic Lotka-Volterra systems with Levy noise [J].
Liu, Meng ;
Wang, Ke .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) :750-763