Continuous glucose monitoring systems-Current status and future perspectives of the flagship technologies in biosensor research

被引:185
作者
Lee, Inyoung [1 ]
Probst, David [1 ]
Klonoff, David [2 ]
Sode, Koji [1 ]
机构
[1] Univ North Carolina Chapel Hill & North Carolina, Joint Dept Biomed Engn, Chapel Hill, NC 27599 USA
[2] Mills Peninsula Med Ctr, Diabet Res Inst, 100 South San Mateo Dr,Room 5147, San Mateo, CA 94401 USA
关键词
Diabetes; Glucose sensor; Blood glucose monitoring; Continuous glucose monitoring; Artificial pancreas; Wearable biosensors; Green initiative; MULTIVARIABLE ARTIFICIAL PANCREAS; BLOOD-GLUCOSE; TEMPERATURE PROPERTIES; BURKHOLDERIA-CEPACIA; INSULIN INJECTIONS; CATALYTIC SUBUNIT; CONTACT-LENS; REAL-TIME; SENSOR; DEHYDROGENASE;
D O I
10.1016/j.bios.2021.113054
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Diabetes mellitus is a chronic illness in the United States affecting nearly 120 million adults, as well as increasing in children under the age of 18. Diabetes was also the 7th leading cause of death in the United States with 270 K deaths in 2017. Diabetes is best managed by tight glycemic control, as achieving near-normal glucose levels is key to reduce the risk of microvascular complications. Currently, continuous glucose monitoring (CGM) systems have been recognized as the ideal monitoring systems for glycemic control of diabetic patients. Briefly, a CGM system measures blood glucose levels in subcutaneous tissue by attaching a CGM sensor to the skin, allowing the users to make appropriate modifications to their medical interventions according to experience or empirically derived algorithms. The principles of the glucose sensing employed in the current commercially available CGM systems are mainly electrochemical, and employ the gold standard enzyme, glucose oxidase, as the glucose sensing molecule with the combination of hydrogen peroxide monitoring or with the combination of redox mediator harboring hydrogel. Recently, by employing an abiotic synthetic receptor harboring a fluorescent probe combined with a fluorescent detection system, a chronic CGM was commercialized. In addition, the development of less or non-invasive monitoring sensors targeting glucose in tears, sweat, saliva and urine have become of great interest although their clinical relevancy is still controversial. This review article introduces current and future technological aspects of CGM systems, the flagship technology in biosensor research, which was initiated, matured and is still growing in North America.
引用
收藏
页数:19
相关论文
共 161 条
[1]   Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood [J].
Aihara, Masakazu ;
Kubota, Naoto ;
Minami, Takahiro ;
Shirakawa, Rika ;
Sakurai, Yoshitaka ;
Hayashi, Takanori ;
Iwamoto, Masahiko ;
Takamoto, Iseki ;
Kubota, Tetsuya ;
Suzuki, Ryo ;
Usami, Satoshi ;
Jinnouchi, Hideaki ;
Aihara, Makoto ;
Yamauchi, Toshimasa ;
Sakata, Toshiya ;
Kadowaki, Takashi .
JOURNAL OF DIABETES INVESTIGATION, 2021, 12 (02) :266-276
[2]   Study of the Correlation between Tear Glucose Concentrations and Blood Glucose Concentrations [J].
Aihara, Masakazu ;
Kubota, Naoto ;
Kadowaki, Takashi .
DIABETES, 2018, 67
[3]  
[Anonymous], 2014, J DIABETES SCI TECHN
[4]   A Wearable Cellulose Acetate-Coated Mouthguard Biosensor for In Vivo Salivary Glucose Measurement [J].
Arakawa, Takahiro ;
Tomoto, Keisuke ;
Nitta, Hiroki ;
Toma, Koji ;
Takeuchi, Shuhei ;
Sekita, Toshiaki ;
Minakuchi, Shunsuke ;
Mitsubayashi, Kohji .
ANALYTICAL CHEMISTRY, 2020, 92 (18) :12201-12207
[5]   APPLICATION OF CHRONIC INTRAVASCULAR BLOOD-GLUCOSE SENSOR IN DOGS [J].
ARMOUR, JC ;
LUCISANO, JY ;
MCKEAN, BD ;
GOUGH, DA .
DIABETES, 1990, 39 (12) :1519-1526
[6]   A glucose-sensing contact lens: from bench top to patient [J].
Badugu, R ;
Lakowicz, JR ;
Geddes, CD .
CURRENT OPINION IN BIOTECHNOLOGY, 2005, 16 (01) :100-107
[7]   Fully Stretchable Capillary Microfluidics-Integrated Nanoporous Gold Electrochemical Sensor for Wearable Continuous Glucose Monitoring [J].
Bae, Chan Wool ;
Phan Tan Toi ;
Kim, Bo Yeong ;
Lee, Won Il ;
Lee, Han Byeol ;
Hanif, Adeela ;
Lee, Eung Hyuk ;
Lee, Nae-Eung .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) :14567-14575
[8]   Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators [J].
Baghelani, Masoud ;
Abbasi, Zahra ;
Daneshmand, Mojgan ;
Light, Peter E. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[9]   Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat [J].
Bandodkar, Amay J. ;
Gutruf, Philipp ;
Choi, Jungil ;
Lee, KunHyuck ;
Sekine, Yurina ;
Reeder, Jonathan T. ;
Jeang, William J. ;
Aranyosi, Alexander J. ;
Lee, Stephen P. ;
Model, Jeffrey B. ;
Ghaffari, Roozbeh ;
Su, Chun-Ju ;
Leshock, John P. ;
Ray, Tyler ;
Verrillo, Anthony ;
Thomas, Kyle ;
Krishnamurthi, Vaishnavi ;
Han, Seungyong ;
Kim, Jeonghyun ;
Krishnan, Siddharth ;
Hang, Tao ;
Rogers, John A. .
SCIENCE ADVANCES, 2019, 5 (01)
[10]  
Bard A., 2000, ELECTROCHEMICAL METH, Vsecond, P24