Non standard finite difference scheme preserving dynamical properties

被引:40
作者
Cresson, Jacky [1 ,2 ]
Pierret, Frederic [2 ,3 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl Pau, Ave Univ,BP 1155, F-64013 Pau, France
[2] Univ Paris 06, Sorbonne Univ, Observ Paris, SYRTE,PSL Res Univ,CNRS,LNE, F-75252 Paris 05, France
[3] Univ Lille, Univ Paris 06, Sorbonne Univ, IMCCE,Observ Paris,PSL Res Univ,CNRS, Lille, France
关键词
Non-standard finite difference methods; Qualitative behaviour; Qualitative dynamics preserving numerical scheme; PREDATOR-PREY MODELS; NUMERICAL-METHODS; NONSTANDARD; CONSISTENCY; SYSTEMS;
D O I
10.1016/j.cam.2016.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the construction of a non-standard finite differences numerical scheme for a general class of two dimensional differential equations including several models in population dynamics using the idea of non-local approximation introduced by R. Mickens. We prove the convergence of the scheme, the unconditional, with respect to the discretization parameter, preservation of the fixed points of the continuous system and the preservation of their stability nature. Several numerical examples are given and comparison with usual numerical scheme (Euler, Runge-Kutta of order 2 or 4) is detailed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 24 条
[1]   Contributions to the mathematics of the nonstandard finite difference method and applications [J].
Anguelov, R ;
Lubuma, JMS .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (05) :518-543
[2]   Dynamically consistent nonstandard finite difference schemes for epidemiological models [J].
Anguelov, R. ;
Dumont, Y. ;
Lubuma, J. M. -S. ;
Shillor, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :161-182
[3]   Topological dynamic consistency of non-standard finite difference schemes for dynamical systems [J].
Anguelov, R. ;
Lubuma, J. M. -S. ;
Shillor, M. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (12) :1769-1791
[4]  
[Anonymous], 1977, LECT NOTES MATH
[5]  
[Anonymous], [No title captured]
[6]  
Brauer F., 2001, Mathematical models in population biology and epidemiology, V1
[7]  
Cartwright J. H. E., 1992, Int. J. Bifurcation Chaos, V2, P427, DOI 10.1142/S0218127492000641
[8]  
Cresson J., 2013, INT J BIOMATH BIOSTA, V2, P111
[9]  
Cresson J., 2012, PREPRINT
[10]  
DEMAILLY J.-P., 2006, COLLECTION GRENOBLE