On the asymptotics of the motion of a nonlinear viscous fluid

被引:1
作者
Khatskevich, V. L. [1 ]
机构
[1] Zhukovskii Gagarin Air Force Acad, Voronezh, Russia
关键词
nonlinear viscous fluid; mathematical model; evolution problem; asymptotics of solutions;
D O I
10.1134/S0037446617020161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under study is the nonstationary problem of the motion of a nonlinear-viscous fluid in the case of low or high viscosity. We establish that the convergence of solutions to the corresponding limit solutions as the viscosity converges to zero or infinity.
引用
收藏
页码:329 / 337
页数:9
相关论文
共 50 条
[41]   Abstract of the PhD thesis: “hp-DGFEM for parabolic evolution problems – applications to diffusion and viscous incompressible fluid flow” [J].
D. Schötzau .
CALCOLO, 2000, 37 :59-64
[42]   NONLINEAR DYNAMICS OF LIGAMENT DEFICIENT KNEES IN PROXIMAL-DISTAL TIBIAL OSCILLATORY MOTION [J].
Caruntu, Dumitru I. ;
Granados, Eduardo ;
Martinez, Thania A. .
PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 3B, 2014,
[43]   REMOTE CONTROL OF NONLINEAR MOTION FOR MECHATRONIC MACHINE BY MEANS OF CoDeSys COMPATIBLE INDUSTRIAL CONTROLLER [J].
Korobiichuk, Igor ;
Dobrzhansky, Oleksandr ;
Kachniarz, Maciej .
TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2017, 24 (06) :1661-1667
[44]   An Approach for Computing Parameters for a Lagrangian Nonlinear Maneuvering and Seakeeping Model of Submerged Vessel Motion [J].
Jung, Seyong ;
Brizzolara, Stefano ;
Woolsey, Craig .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2021, 46 (03) :749-764
[45]   Solvability of the boundary-value problem for a mathematical model of steady-state flows of nonlinear-viscous fluids [J].
Dmitrienko, VT ;
Zvyagin, VG .
MATHEMATICAL NOTES, 2001, 69 (5-6) :770-779
[46]   Solvability of the Boundary-Value Problem for a Mathematical Model of Steady-State Flows of Nonlinear-Viscous Fluids [J].
V. T. Dmitrienko ;
V. G. Zvyagin .
Mathematical Notes, 2001, 69 :770-779
[47]   Dynamics of strongly nonlinear internal long waves in a three-layer fluid system [J].
Tae-Chang Jo ;
Young-Kwang Choi .
Ocean Science Journal, 2014, 49 :357-366
[48]   Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling [J].
Zhang Guang-ming ;
Liu He ;
Zhang Jin ;
Wu Heng-an ;
Wang Xiu-xi .
ROCK AND SOIL MECHANICS, 2010, 31 (05) :1657-1662
[49]   Vibration Control of Conveying Fluid Pipe Based on Inerter Enhanced Nonlinear Energy Sink [J].
Duan, Nan ;
Wu, Yuhu ;
Sun, Xi-Ming ;
Zhong, Chongquan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (04) :1610-1623
[50]   Dynamics of strongly nonlinear internal long waves in a three-layer fluid system [J].
Jo, Tae-Chang ;
Choi, Young-Kwang .
OCEAN SCIENCE JOURNAL, 2014, 49 (04) :357-366