Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells

被引:104
作者
Fadzillah, D. M. [1 ]
Rosli, M. I. [2 ]
Talib, M. Z. M. [2 ]
Kamarudin, S. K. [1 ,2 ]
Daud, W. R. W. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fuel Cell Inst, Ukm Bangi 43600, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Chem & Proc Engn, Ukm Bangi 43600, Selangor, Malaysia
关键词
Fuel cell; Gas diffusion layer; Microstructure modelling; Porosity; Thickness; PTFE; LIQUID WATER TRANSPORT; INPLANE THERMAL-CONDUCTIVITY; PTFE CONTENT; POROSITY DISTRIBUTIONS; LOADING ELECTRODES; CONTACT RESISTANCE; MATHEMATICAL-MODEL; HEAT-TRANSFER; 2-PHASE FLOW; CARBON PAPER;
D O I
10.1016/j.rser.2016.11.235
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A gas diffusion layer (GDL) is the key component in a proton exchange membrane fuel cell (PEMFC), where transportation of reactants and oxidants to electrodes and removal of water from the cell occur. Accurate prediction of the effective transport properties of GDL is important in understanding its effects on PEMFC performance. However, prediction of GDL behavior is challenging because of the complex geometries involved. Hence, microstructure modelling of GDL is highly beneficial in this condition. This article reviews numerous research endeavors that focused on GDL modelling and the parameters that affect the GDL microstructure. This review aims to understand how each parameter affected the GDL performance. The highlighted parameters in this article are fiber diameter, GDL thickness, porosity, and the effect of polytetrafluoroethylene (PTFE).
引用
收藏
页码:1001 / 1009
页数:9
相关论文
共 114 条
[11]   Engineering porous materials for fuel cell applications [J].
Brandon, NP ;
Brett, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1838) :147-159
[12]   Through-Plane Thermal Conductivity of PEMFC Porous Transport Layers [J].
Burheim, Odne S. ;
Pharoah, Jon G. ;
Lampert, Hannah ;
Vie, Preben J. S. ;
Kjelstrup, Signe .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (02)
[13]   3-D Microstructure Analysis of Fuel Cell Materials: Spatial Distributions of Tortuosity, Void Size and Diffusivity [J].
Cecen, A. ;
Wargo, E. A. ;
Hanna, A. C. ;
Turner, D. M. ;
Kalidindi, S. R. ;
Kumbur, E. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (03) :B299-B307
[14]   Water permeation analysis on gas diffusion layers of proton exchange membrane fuel cells for Teflon-coating annotation [J].
Chou, Yen-I ;
Siao, Zih-Yuan ;
Chen, Yu-Feng ;
Sung, Lung-Yu ;
Yang, Wen-Mei ;
Wang, Chi-Chuan .
JOURNAL OF POWER SOURCES, 2010, 195 (02) :536-540
[15]  
Chul-Min Hwang, 2010, EFFECTS FIBER SIZE P
[16]   Numerical modeling and experimental study of the influence of GDL properties on performance in a PEMFC [J].
Chun, Jeong Hwan ;
Park, Ki Tae ;
Jo, Dong Hyun ;
Kim, Sang Gon ;
Kim, Sung Hyun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (02) :1837-1845
[17]   Gas diffusion layer for proton exchange membrane fuel cells-A review [J].
Cindrella, L. ;
Kannan, A. M. ;
Lin, J. F. ;
Saminathan, K. ;
Ho, Y. ;
Lin, C. W. ;
Wertz, J. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :146-160
[18]   Geometrical and transport properties of random packings of spheres and aspherical particles [J].
Coelho, D ;
Thovert, JF ;
Adler, PM .
PHYSICAL REVIEW E, 1997, 55 (02) :1959-1978
[19]   3D phase-differentiated GDL microstructure generation with binder and PTFE distributions [J].
Daino, Michael M. ;
Kandlikar, Satish G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (06) :5180-5189
[20]   Feasibility of periodic surface models to develop gas diffusion layers: A gas permeability study [J].
Didari, Sima ;
Harris, Tequila A. L. ;
Huang, Wei ;
Tessier, Sean M. ;
Wang, Yan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) :14427-14438