Independence number in path graphs

被引:0
作者
Knor, M
Niepel, L
机构
[1] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
[2] Kuwait Univ, Fac Sci, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
path graph; independence number; iterated line graph; graph dynamics; (non)deterministic algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper we present results, which allow us to compute the independence numbers of P-2-path graphs and P-3-path graphs of special graphs. As P-2(G) and P-3(G) are subgraphs of iterated line graphs L-2(G) and L-3(G), respectively, we compare our results with the independence numbers of corresponding iterated line graphs.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 17 条
[1]  
Aldred REL, 1997, J GRAPH THEOR, V26, P35, DOI 10.1002/(SICI)1097-0118(199709)26:1<35::AID-JGT5>3.0.CO
[2]  
2-I
[3]  
[Anonymous], 1957, Casopis Pest Mat
[4]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[5]   Edge-connectivity and super edge-connectivity of P2-path graphs [J].
Balbuena, C ;
Ferrero, D .
DISCRETE MATHEMATICS, 2003, 269 (1-3) :13-20
[6]  
Belan A., 1999, ACTA MATH U COMENIAN, VLXVIII, P111
[7]   PATH GRAPHS [J].
BROERSMA, HJ ;
HOEDE, C .
JOURNAL OF GRAPH THEORY, 1989, 13 (04) :427-444
[8]  
Ferrero D., 2003, ACTA MATH U COMEN, V72, P59
[9]   Diameter in iterated path graphs [J].
Knor, M ;
Niepel, L .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :151-161
[10]  
Knor M., 2002, AUSTR J COMB, V25, P175