Preparation of a water activation experiment at JET to support ITER

被引:13
作者
Radulovic, Vladimir [1 ,2 ]
Rupnik, Sebastjan [1 ,2 ]
Naish, Jonathan [1 ,3 ]
Bradnam, Steve [1 ,3 ]
Ghani, Zamir [1 ,3 ]
Popovichev, Sergey [1 ,3 ]
Kiptily, Vasili [1 ,3 ]
Batistoni, Paola [1 ,3 ,4 ]
Villari, Rosaria [1 ,3 ,4 ]
Snoj, Luka [1 ,2 ,5 ]
机构
[1] Culham Sci Ctr, EUROfus Consortium, Abingdon, Oxon, England
[2] Jozef Stefan Inst, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia
[3] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[4] ENEA Fus Tech Unit, Via E Fermi 45, I-00044 Frascati, Italy
[5] Univ Ljubljana, Fac Math & Phys, Jadranska Cesta 19, Ljubljana 1000, Slovenia
关键词
Nuclear fusion; Water activation; N-16; High-energy gamma rays; Nuclear heating; SYSTEM;
D O I
10.1016/j.fusengdes.2021.112410
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Fast neutron induced water activation will result in significant additional nuclear heating loads to cryogenic components in the ITER fusion reactor during operation, which are considered as an important issue in the ITER design. A water activation experiment has been proposed at the Joint European Torus (JET) which would enable measurements of radiation dose rates and N-16 concentrations in water, activated in the most representative fusion environment achievable, and extrapolability to ITER conditions. This paper presents a study aimed at establishing the experiment feasibility, in terms of the identification and selection of an experimental location at JET, and the definition of an experimental setup enabling accurate measurements of the quantities of interest. A suitable experimental location in JET was identified in the basement of the JET Torus Hall. The expected O-16(n, p)N-16 activation rates in the cooling water in the JET tokamak were determined through Monte Carlo particle transport calculations and the induced N-16 activity in the water was propagated to the experimental location. Subsequent calculations were performed to determine the expected detector response to N-16 gamma rays for three different JET pulse scenarios. Two scintillator gamma detectors were calibrated with standard gamma calibration sources and tested with a Cm-244/C-13 neutron source, also emitting 6.13 MeV gamma rays, corresponding to the N-16 gamma ray energy. The presented work demonstrates the feasibility of a water activation experiment at JET and provides valuable information for the experiment design.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Benchmark experiments on neutron streaming through JET Torus Hall penetrations [J].
Batistoni, P. ;
Conroy, S. ;
Lilley, S. ;
Naish, J. ;
Obryk, B. ;
Popovichev, S. ;
Stamatelatos, I. ;
Syme, B. ;
Vasilopoulou, T. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. .
NUCLEAR FUSION, 2015, 55 (05)
[2]   Rigorous MCNP based shutdown dose rate calculations: computational scheme, verification calculations and application to ITER [J].
Chen, Y ;
Fischer, U .
FUSION ENGINEERING AND DESIGN, 2002, 63-64 :107-114
[3]  
Forrest R.A., 2007, UKAEA FUS 535
[4]   Modified blanket cooling manifold system for ITER [J].
Furmanek, A. ;
Lorenzetto, P. ;
Damiani, C. .
FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) :793-797
[5]   Radiation levels in the ITER tokamak complex during and after plasma operation [J].
Ghani, Zamir ;
Turner, Andrew ;
Mangham, Sam ;
Naish, Jonathan ;
Lis, Mercedes ;
Packer, Lee ;
Loughlin, Michael .
FUSION ENGINEERING AND DESIGN, 2015, 96-97 :261-264
[6]   INITIAL MCNP6 RELEASE OVERVIEW [J].
Goorley, T. ;
James, M. ;
Booth, T. ;
Brown, F. ;
Bull, J. ;
Cox, L. J. ;
Durkee, J. ;
Elson, J. ;
Fensin, M. ;
Forster, R. A. ;
Hendricks, J. ;
Hughes, H. G. ;
Johns, R. ;
Kiedrowski, B. ;
Martz, R. ;
Mashnik, S. ;
McKinney, G. ;
Pelowitz, D. ;
Prael, R. ;
Sweezy, J. ;
Waters, L. ;
Wilcox, T. ;
Zukaitis, T. .
NUCLEAR TECHNOLOGY, 2012, 180 (03) :298-315
[7]  
Herman M., 1997, Tech. Rep. INDC(NDS)-373
[8]  
Iida H, 1998, 17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, P837, DOI 10.1109/FUSION.1997.687755
[9]  
Jakhar S., 2017, T AM NUCL SOC, V116
[10]  
Jakhar S., 2016, technical report