A note on a priori error estimates for augmented mixed methods

被引:0
作者
Barrios, Tomas P. [1 ]
Behrens, Edwin [2 ]
Bustinza, Rommel [3 ,4 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[2] Univ Catolica Santisima Concepcion, Dept Ingn Civil, Casilla 297, Concepcion, Chile
[3] Univ Concepcion, MA CI2, Casilla 160-C, Concepcion, Chile
[4] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
关键词
A priori error bound; Mixed and augmented mixed methods;
D O I
10.1016/j.aml.2016.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we describe a strategy that improves the a priori error bounds for augmented mixed methods under appropriate hypotheses. This means that we can derive a priori error estimates for each one of the involved unknowns. Usually, the standard a priori error estimate is for the total error. Finally, a numerical example is included, that illustrates the theoretical results proven in this paper. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 6 条
[1]  
[Anonymous], 2002, FINITE ELEMENT METHO
[2]   An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) :653-676
[3]   A note on least-squares mixed finite elements in relation to standard and mixed finite elements [J].
Brandts, Jan ;
Chen, Yanping ;
Yang, Julie .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) :779-789
[4]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[5]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[6]  
ROBERTS JE, 1991, HDB NUMERICAL ANAL 1, V2