Calculation of optical properties with spin-orbit coupling for warm dense matter

被引:4
作者
Brouwer, Nils [1 ,2 ]
Recoules, Vanina [1 ,2 ]
Holzwarth, Natalie [3 ]
Torrent, Marc [1 ,2 ]
机构
[1] CEA, DIF, DAM, F-91297 Arpajon, France
[2] Univ Paris Saclay, Lab Matiere Condit Extremes, CEA, F-91680 Bruyeres Le Chatel, France
[3] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA
关键词
Spin-orbit coupling; Density functional theory; PAW; Absorption; XANES; Warm dense matter; NEAR-EDGE STRUCTURE; CODE; GOLD; IMPLEMENTATION; SPECTROSCOPY; CONDUCTION; SILVER; XANES;
D O I
10.1016/j.cpc.2021.108029
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Optical properties of warm dense matter are computed within linear response theory using the Kubo-Greenwood formula in the framework of Density Functional Theory and the Projector Augmented-Wave (PAW) method. For transition metals, the effect of spin-orbit coupling (SOC) has to be taken into account. We present the theoretical framework to introduce SOC in the PAW formalism and then to compute optical properties including SOC using the Kubo-Greenwood formula. This formulation has been implemented in the ABINIT software. Moreover, for high energy absorption spectra, we use Dirac relativistic core wave functions from the ATOMPAW code to obtain the correct SOC energy splitting. This implementation enables a description of optical properties for warm dense metals including SOC for both core and valence orbitals. Example calculations are presented for warm dense gold and copper. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 56 条
  • [1] Screened Coulomb interaction calculations: cRPA implementation and applications to dynamical screening and self-consistency in uranium dioxide and cerium
    Amadon, Bernard
    Applencourt, Thomas
    Bruneval, Fabien
    [J]. PHYSICAL REVIEW B, 2014, 89 (12)
  • [2] Calculations of Hubbard U from first-principles
    Aryasetiawan, F.
    Karlsson, K.
    Jepsen, O.
    Schoenberger, U.
    [J]. PHYSICAL REVIEW B, 2006, 74 (12):
  • [3] Frequency-dependent local interactions and low-energy effective models from electronic structure calculations
    Aryasetiawan, F
    Imada, M
    Georges, A
    Kotliar, G
    Biermann, S
    Lichtenstein, AI
    [J]. PHYSICAL REVIEW B, 2004, 70 (19) : 1 - 8
  • [4] Banhart J, 1998, PHILOS MAG B, V77, P85, DOI 10.1080/13642819808206385
  • [5] Blaha P., 2001, PLANE WAVE LOCAL ORB
  • [6] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] Projector augmented wave calculation of x-ray absorption spectra at the L2,3 edges
    Bunau, Oana
    Calandra, Matteo
    [J]. PHYSICAL REVIEW B, 2013, 87 (20)
  • [8] Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets
    Calderin, L.
    Karasiev, V. V.
    Trickey, S. B.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 : 118 - 142
  • [9] Evolution of ac Conductivity in Nonequilibrium Warm Dense Gold
    Chen, Z.
    Holst, B.
    Kirkwood, S. E.
    Sametoglu, V.
    Reid, M.
    Tsui, Y. Y.
    Recoules, V.
    Ng, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (13)
  • [10] ON THE ELECTRICAL CONDUCTIVITY OF METALS
    CHESTER, GV
    THELLUNG, A
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1959, 73 (473): : 745 - 766