Monte Carlo simulations of random non-commutative geometries

被引:29
作者
Barrett, John W. [1 ]
Glaser, Lisa [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
spectral triples; non-commutative geometry; random geometry; Dirac operators; QUANTUM-GRAVITY; RANDOM-MATRIX; FUZZY SPHERE;
D O I
10.1088/1751-8113/49/24/245001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random non-commutative geometries are introduced by integrating over the space of Dirac operators that form a spectral triple with a fixed algebra and Hilbert space. The cases with the simplest types of Clifford algebra are investigated using Monte Carlo simulations to compute the integrals. Various qualitatively different types of behaviour of these random Dirac operators are exhibited. Some features are explained in terms of the theory of random matrices but other phenomena remain mysterious. Some of the models with a quartic action of symmetry-breaking type display a phase transition. Close to the phase transition the spectrum of a typical Dirac operator shows manifold-like behaviour for the eigenvalues below a cut-off scale.
引用
收藏
页数:27
相关论文
共 25 条
[1]   Nonperturbative quantum gravity [J].
Ambjorn, J. ;
Goerlich, A. ;
Jurkiewicz, J. ;
Loll, R. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (4-5) :127-210
[2]  
Ambjorn J., 2005, CAMBRIDGE MONOGRAPHS
[3]  
[Anonymous], 1999, Monte Carlo Methods in Statistical Physics
[4]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[5]  
Azuma T, 2004, J HIGH ENERGY PHYS
[6]   A METHOD OF INTEGRATION OVER MATRIX VARIABLES .2. [J].
CHADHA, S ;
MAHOUX, G ;
MEHTA, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (03) :579-586
[7]   The spectral action principle [J].
Chamseddine, AH ;
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :731-750
[8]   The Uncanny Precision of the Spectral Action [J].
Chamseddine, Ali H. ;
Connes, Alain .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (03) :867-897
[9]  
Cicuta G M, 2001, RANDOM MATRIX MODELS, V40, P95
[10]   Noncommutative geometry and the standard model with neutrino mixing [J].
Connes, Alain .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11)