Block Markov superposition transmission of convolutional codes with minimum shift keying signalling

被引:1
作者
Liu, Xiying [1 ,2 ]
Liang, Chulong [1 ]
Ma, Xiao [1 ]
机构
[1] Sun Yat Sen Univ, Dept Elect & Commun Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Informat Engn, Guangzhou, Guangdong, Peoples R China
关键词
Markov processes; convolutional codes; minimum shift keying; iterative methods; error statistics; AWGN channels; modulation coding; block Markov superposition transmission; minimum shift keying signalling; BMST-MSK; BMST-NRMSK; sliding-window decoding algorithm; sliding-window demodulation algorithm; iterative processing; genie-aided decoder; bit-error-rate; additive white Gaussian noise channels; Shannon limit; MODULATION; PERFORMANCE; DESIGN; CPM; MSK;
D O I
10.1049/iet-com.2014.0751
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the authors' present a scheme, denoted as BMST-MSK, which combines the block Markov superposition transmission (BMST) with the minimum shift keying (MSK) signalling. The BMST-MSK can be implemented in two forms - the BMST with recursive MSK (BMST-RMSK) and the BMST with non-recursive MSK (BMST-NRMSK). The BMST-MSK admits a sliding-window decoding/demodulation algorithm, where two schedules with or without iterative processing between the BMST and MSK (referred to as outer iteration) are discussed. To analyse the asymptotic performance of BMST-MSK, the authors' first assume a genie-aided decoder and then derive the union bound for the equivalent genie-aided system. Numerical results show that the performances of the BMST-MSK match well with the derived lower bounds in the low error rate regions. From simulations, the authors' found that the outer iterations can provide performance improvement for the BMST-RMSK, but not for the BMST-NRMSK. Taking a (2,1,2) convolutional code with input length of 10 000 bits as the basic code, the BMST-NRMSK achieves a bit-error-rate of 10(-5) at E-b/N-0 = 0.45 dB over additive white Gaussian noise channels, which is away from the Shannon limit about 0.25 dB.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 15 条
[1]  
Anderson J.B., 1986, Digital Phase Modulation
[2]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[3]   Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding [J].
Benedetto, S ;
Divsalar, D ;
Montorsi, G ;
Pollara, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :909-926
[4]   Bit-interleaved coded modulation [J].
Caire, G ;
Taricco, G ;
Biglieri, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) :927-946
[5]   ERROR-CONTROL PROPERTIES OF MINIMUM SHIFT KEYING [J].
LEIB, H ;
PASUPATHY, S .
IEEE COMMUNICATIONS MAGAZINE, 1993, 31 (01) :52-61
[6]   Bit-interleaved coded modulation with iterative decoding and 8PSK signaling [J].
Li, XD ;
Chindapol, A ;
Ritcey, JA .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (08) :1250-1257
[7]   Block Markov Superposition Transmission with Bit-Interleaved Coded Modulation [J].
Liang, Chulong ;
Huang, Kechao ;
Ma, Xiao ;
Bai, Baoming .
IEEE COMMUNICATIONS LETTERS, 2014, 18 (03) :397-400
[8]   Performance bounds for uniformly interleaved serial concatenations with a general inner system [J].
Moqvist, P. ;
Aulin, T. .
IET COMMUNICATIONS, 2007, 1 (04) :623-627
[9]   STRUCTURE, OPTIMIZATION, AND REALIZATION OF FFSK TRELLIS CODES [J].
MORALESMORENO, F ;
PASUPATHY, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (04) :730-751
[10]   Design of serial concatenated MSK schemes based on density evolution [J].
Narayanan, KR ;
Altunbas, I ;
Narayanaswami, RS .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (08) :1283-1295