共 9 条
Data of characterization and adsorption of fluoride from aqueous solution by using modified Azadirachta indica bark
被引:13
作者:
Telkapalliwar, Nandkishor G.
[1
]
Shivankar, Vidyadhar M.
[1
]
机构:
[1] Dr Ambedkar Coll, Dept Chem, Nagpur, Maharashtra, India
来源:
DATA IN BRIEF
|
2019年
/
26卷
关键词:
Characterization;
Adsorption;
Fluoride;
Kinetics;
Isotherms;
Thermodynamics;
MALACHITE GREEN;
ACTIVATED CARBON;
REMOVAL;
ZINC;
D O I:
10.1016/j.dib.2019.104509
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
This data was decisive on the adsorption of fluoride by microwave assisted carbonized Azadirachta indica bark (MACAIB) adsorbent material from aqueous solution. Azadirachta indica bark is a plant-based effortlessly available item which is transformed into a carbonaceous adsorbent material and utilized for the removal fluoride from aqueous solution. Characterization of the MACAIB adsorbent material demonstrated that it was porous and extremely effective in the removal of fluoride. The operating parameters such as pH, adsorbent dose, agitation speed, initial fluoride concentration, contact time and temperature were efficient on the adsorption ability of fluoride. The maximum removal efficiency of fluoride with an initial fluoride concentration 2 mg/L was found to be 83.50%. Experimental adsorption isotherm equilibrium data furnished was the best with Langmuir adsorption isotherm model, showing monolayer adsorption on a homogenous surface (most extreme monolayer adsorption capacity was 0.923 mg/g at 303 K). The adsorption kinetics experiment was followed by pseudo second-order kinetic model that indicated chemisorptions process. Intra-particle diffusion mechanism was not the sole rate-controlling factor. Thermodynamic analysis proposes that removal of fluoride from aqueous solution by MACAIB material was an exothermic and spontaneous process. Characterization of the MACAIB carbon material before and after adsorption through FTIR, SEM, EDX and XRD techniques confirmed the fluoride adsorption on the adsorbent surface. It could be accomplished that MACAIB is an effective adsorbent material for successful removal of fluoride from aqueous solution. (c) 2019 Published by Elsevier Inc.
引用
收藏
页数:15
相关论文