Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors

被引:94
作者
Cheng, Ruoran [1 ]
Zhang, Chunli [1 ]
Chen, Weiqiu [1 ]
Yang, Jiashi [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
ELECTROMECHANICAL FIELDS; CARRIER DISTRIBUTION; ANTIPLANE CRACK; NANOWIRE; POWER;
D O I
10.1063/1.5044739
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. A theoretical analysis is performed using a one-dimensional model. It is shown that mechanical loads cause redistribution of mobile charges in such a composite fiber. Thus, the composite fiber exhibits piezotronic couplings like a homogeneous piezoelectric semiconducting fiber. The couplings are a product property of the composite, enabling the design of piezotronics devices beyond materials with direct piezotronics couplings. The basic behavior of the composite fiber and the effects of various parameters on piezotronic couplings are calculated and examined. It is observed that piezotronic couplings in these fibers are sensitive to material and geometric parameters and can be optimized through design. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Non-linear piezoelectricity in wurtzite ZnO semiconductors [J].
Al-Zahrani, H. Y. S. ;
Pal, J. ;
Migliorato, M. A. .
NANO ENERGY, 2013, 2 (06) :1214-1217
[2]   Piezoelectric field enhancement in III-V core-shell nanowires [J].
Al-Zahrani, Hanan Y. S. ;
Pal, Joydeep ;
Migliorato, Max A. ;
Tse, Geoffrey ;
Yu, Dapeng .
NANO ENERGY, 2015, 14 :382-391
[3]   Piezo-Semiconductive Quasi-1D Nanodevices with or without Anti-Symmetry [J].
Araneo, Rodolfo ;
Lovat, Giampiero ;
Burghignoli, Paolo ;
Falconi, Christian .
ADVANCED MATERIALS, 2012, 24 (34) :4719-4724
[4]  
Auld B. A., 1973, Acoustic Waves and Fields in Solids, V1
[5]   High-frequency acoustic charge transport in GaAs nanowires [J].
Buyukkose, S. ;
Hernandez-Minguez, A. ;
Vratzov, B. ;
Somaschini, C. ;
Geelhaar, L. ;
Riechert, H. ;
van der Wiel, W. G. ;
Santos, P. V. .
NANOTECHNOLOGY, 2014, 25 (13)
[6]   Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods [J].
Choi, Min-Yeol ;
Choi, Dukhyun ;
Jin, Mi-Jin ;
Kim, Insoo ;
Kim, Song-Hyeob ;
Choi, Joe-Young ;
Lee, Song Yoon ;
Kim, Jong Min ;
Kim, Sang-Woo .
ADVANCED MATERIALS, 2009, 21 (21) :2185-+
[7]   Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration [J].
Dai, Xiaoyun ;
Zhu, Feng ;
Qian, Zhenghua ;
Yang, Jiashi .
NANO ENERGY, 2018, 43 :22-28
[8]   ACOUSTOELECTRIC DETECTION OF ULTRASOUND POWER WITH COMPOSITE PIEZOELECTRIC AND SEMICONDUCTOR-DEVICES [J].
DIETZ, DR ;
BUSSE, LJ ;
FIFE, MJ .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1988, 35 (02) :146-151
[9]   Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method [J].
Fan, CuiYing ;
Yan, Yang ;
Xu, GuangTao ;
Zhao, MingHao .
ENGINEERING FRACTURE MECHANICS, 2016, 165 :183-196
[10]   Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I-Linearized analysis [J].
Fan, Shuaiqi ;
Liang, Yuxing ;
Xie, Jiemin ;
Hu, Yuantai .
NANO ENERGY, 2017, 40 :82-87