Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding

被引:46
作者
Umutlu, Lale [1 ,2 ]
Kirchner, Julian [3 ]
Bruckmann, Nils Martin [3 ]
Morawitz, Janna [3 ]
Antoch, Gerald [3 ]
Ingenwerth, Marc [4 ,5 ]
Bittner, Ann-Kathrin [6 ]
Hoffmann, Oliver [6 ]
Haubold, Johannes [1 ]
Grueneisen, Johannes [1 ]
Quick, Harald H. [7 ,8 ]
Rischpler, Christoph [9 ]
Herrmann, Ken [9 ]
Gibbs, Peter [2 ]
Pinker-Domenig, Katja [2 ]
机构
[1] Univ Duisburg Essen, Univ Hosp Essen, Dept Diagnost & Intervent Radiol & Neuroradiol, D-45147 Essen, Germany
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10065 USA
[3] Univ Dusseldorf, Med Fac, Dept Diagnost & Intervent Radiol, D-40225 Dusseldorf, Germany
[4] Univ Duisburg Essen, Univ Hosp Essen, West German Canc Ctr, Inst Pathol, D-45147 Essen, Germany
[5] German Canc Consortium DKTK Essen, D-45147 Essen, Germany
[6] Univ Duisburg Essen, Univ Hosp Essen, Dept Gynecol & Obstet, D-45147 Essen, Germany
[7] Univ Duisburg Essen, Erwin L Hahn Inst Magnet Resonance Imaging, D-45141 Essen, Germany
[8] Univ Duisburg Essen, Univ Hosp Essen, High Field & Hybrid MR Imaging, D-45147 Essen, Germany
[9] Univ Duisburg Essen, Univ Hosp Essen, Dept Nucl Med, D-45147 Essen, Germany
关键词
multiparametric F-18-FDG PET; MRI; radiomics; breast cancer; radiomics-based phenotyping and tumor decoding; SUPPORT VECTOR MACHINES; SUBTYPES; MRI; CHEMOSENSITIVITY; IMPLEMENTATION; PREDICTION; REGRESSION; SIGNATURES; THERAPY; IMAGES;
D O I
10.3390/cancers13122928
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous F-18-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for multiparametric MRI alone as well as F-18-FDG PET/MRI as an imaging platform for high-quality non-invasive tissue characterization. Background: This study investigated the performance of simultaneous F-18-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Methods: One hundred and twenty-four patients underwent simultaneous F-18-FDG PET/MRI. Breast tumors were segmented and radiomic features were extracted utilizing CERR software following the IBSI guidelines. LASSO regression was employed to select the most important radiomics features prior to model development. Five-fold cross validation was then utilized alongside support vector machines, resulting in predictive models for various combinations of imaging data series. Results: The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88, Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and 0.99, respectively). Conclusion: F-18-FDG PET/MRI enables comprehensive high-quality radiomics analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously acquired morphologic, functional and metabolic data.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research [J].
Apte, Aditya P. ;
Iyer, Aditi ;
Crispin-Ortuzar, Mireia ;
Pandya, Rutu ;
van Dijk, Lisanne V. ;
Spezi, Emiliano ;
Thor, Maria ;
Um, Hyemin ;
Veeraraghavan, Harini ;
Oh, Jung Hun ;
Shukla-Dave, Amita ;
Deasy, Joseph O. .
MEDICAL PHYSICS, 2018, 45 (08) :3713-3720
[2]   MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer [J].
Bitencourt, Almir G., V ;
Gibbs, Peter ;
Saccarelli, Carolina Rossi ;
Daimiel, Isaac ;
Lo Gullo, Roberto ;
Fox, Michael J. ;
Thakur, Sunitha ;
Pinker, Katja ;
Morris, Elizabeth A. ;
Morrow, Monica ;
Jochelson, Maxine S. .
EBIOMEDICINE, 2020, 61
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]   Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study [J].
Carey, Lisa A. ;
Perou, Charles M. ;
Livasy, Chad A. ;
Dressler, Lynn G. ;
Cowan, David ;
Conway, Kathleen ;
Karaca, Gamze ;
Troester, Melissa A. ;
Tse, Chiu Kit ;
Edmiston, Sharon ;
Deming, Sandra L. ;
Geradts, Joseph ;
Cheang, Maggie C. U. ;
Nielsen, Torsten O. ;
Moorman, Patricia G. ;
Earp, H. Shelton ;
Millikan, Robert C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 295 (21) :2492-2502
[5]   Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes [J].
Dai, Xiaofeng ;
Xiang, Liangjian ;
Li, Ting ;
Bai, Zhonghu .
JOURNAL OF CANCER, 2016, 7 (10) :1281-1294
[6]   A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer [J].
Demircioglu, Aydin ;
Grueneisen, Johannes ;
Ingenwerth, Marc ;
Hoffmann, Oliver ;
Pinker-Domenig, Katja ;
Morris, Elizabeth ;
Haubold, Johannes ;
Forsting, Michael ;
Nensa, Felix ;
Umutlu, Lale .
PLOS ONE, 2020, 15 (06)
[7]   Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group [J].
Dowsett, Mitch ;
Nielsen, Torsten O. ;
A'Hern, Roger ;
Bartlett, John ;
Coombes, R. Charles ;
Cuzick, Jack ;
Ellis, Matthew ;
Henry, N. Lynn ;
Hugh, Judith C. ;
Lively, Tracy ;
McShane, Lisa ;
Paik, Soon ;
Penault-Llorca, Frederique ;
Prudkin, Ljudmila ;
Regan, Meredith ;
Salter, Janine ;
Sotiriou, Christos ;
Smith, Ian E. ;
Viale, Giuseppe ;
Zujewski, Jo Anne ;
Hayes, Daniel F. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (22) :1656-1664
[8]   PATHOLOGICAL PROGNOSTIC FACTORS IN BREAST-CANCER .1. THE VALUE OF HISTOLOGICAL GRADE IN BREAST-CANCER - EXPERIENCE FROM A LARGE STUDY WITH LONG-TERM FOLLOW-UP [J].
ELSTON, CW ;
ELLIS, IO .
HISTOPATHOLOGY, 1991, 19 (05) :403-410
[9]   Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics [J].
Fan, Ming ;
Yuan, Wei ;
Zhao, Wenrui ;
Xu, Maosheng ;
Wang, Shiwei ;
Gao, Xin ;
Li, Lihua .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (06) :1632-1642
[10]   Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012 [J].
Ferlay, J. ;
Steliarova-Foucher, E. ;
Lortet-Tieulent, J. ;
Rosso, S. ;
Coebergh, J. W. W. ;
Comber, H. ;
Forman, D. ;
Bray, F. .
EUROPEAN JOURNAL OF CANCER, 2013, 49 (06) :1374-1403