Approximation by (p, q)-Lupas-Schurer-Kantorovich operators

被引:0
作者
Kanat, Kadir [1 ]
Sofyalioglu, Melek [1 ]
机构
[1] Ankara Hao Bayram Vell Univ, Polatli Fac Sci & Arts, Ankara, Turkey
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
关键词
Lupas operators; (p; q)-integers; Rate of convergence; Local approximation; Korovkin's approximation theorem; BERNSTEIN; Q)-ANALOG; VARIANT;
D O I
10.1186/s13660-018-1858-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, we examine the (p,q)-analogue of Kantorovich type Lupa Schurer operators with the help of (p,q)-Jackson integral. Then, we estimate the rate of convergence for the constructed operators by using the modulus of continuity in terms of a Lipschitz class function and by means of Peetre's K-functionals based on Korovkin theorem. Moreover, we illustrate the approximation of the (p,q)-Lupa Schurer Kantorovich operators to appointed functions by the help of Matlab algorithm and then show the comparison of the convergence of these operators with Lupa Schurer operators based on (p,q)-integers.
引用
收藏
页数:17
相关论文
共 25 条
[1]  
Acar T, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1045-9
[2]   Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators [J].
Acu, Ana-Maria ;
Muraru, Carmen Violeta ;
Sofonea, Daniel Florin ;
Radu, Voichita Adriana .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5636-5650
[3]  
Agrawal PN, 2015, BOLL UNIONE MAT ITAL, V8, P169, DOI 10.1007/s40574-015-0034-0
[4]   Approximation properties of Lupas–Kantorovich operators based on Polya distribution [J].
Agrawal P.N. ;
Ispir N. ;
Kajla A. .
Rendiconti del Circolo Matematico di Palermo Series 2, 2016, 65 (2) :185-208
[5]  
Agyuz E, 2018, J INEQUAL APPL, DOI 10.1186/s13660-018-1673-3
[6]  
[Anonymous], 1987, SEMINAR NUMERICAL ST
[7]  
[Anonymous], 1962, Math. Inst. Techn. Univ. Delft Report
[8]   On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators [J].
Cai, Qing-Bo ;
Zhou, Guorong .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 :12-20
[9]  
DeVore Ronald A., 1993, Constructive Approximation, V303
[10]  
Gupta V., 2016, APPL MATH INFORM SCI, V10, P1551, DOI DOI 10.18576/amis/100433