Influence of Anthropogenic Warming on the Atlantic Multidecadal Variability and Its Impact on Global Climate in the Twenty-First Century in the MPI-GE Simulations

被引:10
作者
Qin, Minhua [1 ,2 ,3 ]
Dai, Aiguo [4 ]
Hua, Wenjian [3 ]
机构
[1] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Key Lab Meteorol Disaster, Minist Educ KLME,Joint Int Res Lab Climate & Envi, Nanjing, Peoples R China
[4] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Atlantic Ocean; Anthropogenic effects/forcing; Climate models; Multidecadal variability; SEA-SURFACE TEMPERATURE; NORTH-ATLANTIC; INTERNAL VARIABILITY; DECADAL VARIABILITY; SAHEL RAINFALL; OSCILLATION; PACIFIC; OCEAN; AEROSOLS; CIRCULATION;
D O I
10.1175/JCLI-D-21-0535.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Atlantic multidecadal variability (AMV), a dominant mode of multidecadal variations in North Atlantic sea surface temperatures (NASST), has major impacts on global climate. Given that both internal variability and external forcing have contributed to the historical AMV, how future anthropogenic forcing may regulate the AMV is of concern but remains unclear. By analyzing observations and a large ensemble of model simulations [i.e., the Max Planck Institute Grand Ensemble (MPI-GE)], the internally generated (AMVIV) and externally forced (AMVEX) components of the AMV and their climatic impacts during the twenty-first century are examined. Consistent with previous findings, the AMVIV would weaken with future warming by 11%-17% in its amplitude by the end of the twenty-first century, along with reduced warming anomaly over the midlatitude North Atlantic under future warming during the positive AMVIV phases. In contrast, the AMVEX is projected to strengthen with reduced frequency under future warming. Furthermore, future AMVIV-related temperature variations would weaken over Eurasia and North Africa but strengthen over the United States, whereas AMVIV-related precipitation over parts of North America and Eurasia would weaken in a warmer climate. The AMVEX's impact on global precipitation would also weaken. The results provide new evidence that future anthropogenic forcing (i.e., nonlinear changes in GHGs and aerosols) under different scenarios can generate distinct multidecadal variations and influence the internally generated AMV, and that multidecadal changes in anthropogenic forcing are important for future AMV.
引用
收藏
页码:2805 / 2821
页数:17
相关论文
共 81 条
[21]   Defining the Internal Component of Atlantic Multidecadal Variability in a Changing Climate [J].
Deser, Clara ;
Phillips, Adam S. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (22)
[22]   Future changes in internal variability of the Atlantic Meridional Overturning Circulation [J].
Drijfhout, Sybren ;
Hazeleger, Wilco ;
Selten, Frank ;
Haarsma, Rein .
CLIMATE DYNAMICS, 2008, 30 (04) :407-419
[23]   The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US [J].
Enfield, DB ;
Mestas-Nuñez, AM ;
Trimble, PJ .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (10) :2077-2080
[24]   SAHEL RAINFALL AND WORLDWIDE SEA TEMPERATURES, 1901-85 [J].
FOLLAND, CK ;
PALMER, TN ;
PARKER, DE .
NATURE, 1986, 320 (6063) :602-607
[25]   On the Choice of Ensemble Mean for Estimating the Forced Signal in the Presence of Internal Variability [J].
Frankcombe, Leela M. ;
England, Matthew H. ;
Kajtar, Jules B. ;
Mann, Michael E. ;
Steinman, Byron A. .
JOURNAL OF CLIMATE, 2018, 31 (14) :5681-5693
[26]   Separating Internal Variability from the Externally Forced Climate Response [J].
Frankcombe, Leela M. ;
England, Matthew H. ;
Mann, Michael E. ;
Steinman, Byron A. .
JOURNAL OF CLIMATE, 2015, 28 (20) :8184-8202
[27]   Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating [J].
Ghosh, Rohit ;
Mueller, Wolfgang A. ;
Baehr, Johanna ;
Bader, Juergen .
CLIMATE DYNAMICS, 2017, 48 (11) :3547-3563
[28]   Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5 [J].
Giorgetta, Marco A. ;
Jungclaus, Johann ;
Reick, Christian H. ;
Legutke, Stephanie ;
Bader, Juergen ;
Boettinger, Michael ;
Brovkin, Victor ;
Crueger, Traute ;
Esch, Monika ;
Fieg, Kerstin ;
Glushak, Ksenia ;
Gayler, Veronika ;
Haak, Helmuth ;
Hollweg, Heinz-Dieter ;
Ilyina, Tatiana ;
Kinne, Stefan ;
Kornblueh, Luis ;
Matei, Daniela ;
Mauritsen, Thorsten ;
Mikolajewicz, Uwe ;
Mueller, Wolfgang ;
Notz, Dirk ;
Pithan, Felix ;
Raddatz, Thomas ;
Rast, Sebastian ;
Redler, Rene ;
Roeckner, Erich ;
Schmidt, Hauke ;
Schnur, Reiner ;
Segschneider, Joachim ;
Six, Katharina D. ;
Stockhause, Martina ;
Timmreck, Claudia ;
Wegner, Joerg ;
Widmann, Heinrich ;
Wieners, Karl-H ;
Claussen, Martin ;
Marotzke, Jochem ;
Stevens, Bjorn .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2013, 5 (03) :572-597
[29]   A Limited Role for Unforced Internal Variability in Twentieth-Century Warming [J].
Haustein, Karsten ;
Otto, Friederike E. L. ;
Venema, Victor ;
Jacobs, Peter ;
Cowtan, Kevin ;
Hausfather, Zeke ;
Way, Robert G. ;
White, Bethan ;
Subramanian, Aneesh ;
Schurer, Andrew P. .
JOURNAL OF CLIMATE, 2019, 32 (16) :4893-4917
[30]   Reconciling Human and Natural Drivers of the Tripole Pattern of Multidecadal Summer Temperature Variations Over Eurasia [J].
Hua, Wenjian ;
Qin, Minhua ;
Dai, Aiguo ;
Zhou, Liming ;
Chen, Haishan ;
Zhang, Wanxin .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (14)