Field Effect in Graphene-Based van der Waals Heterostructures: Stacking Sequence Matters

被引:20
|
作者
Stradi, Daniele [1 ,2 ]
Papior, Nick R. [1 ,3 ]
Hansen, Ole [4 ]
Brandbyge, Mads [1 ]
机构
[1] Tech Univ Denmark, CNG, Dept Micro & Nanotechnol DTU Nanotech, DK-2800 Lyngby, Denmark
[2] QuantumWise AS, Fruebjergvej 3,Postbox 4, DK-2100 Copenhagen, Denmark
[3] ICN2, Campus UAB, Bellaterra 08193, Spain
[4] Tech Univ Denmark, Dept Micro & Nanotechnol DTU Nanotech, DK-2800 Lyngby, Denmark
关键词
vdW heterostructures; field-effect; transport; graphene; density functional theory; nonequilibrium Green's function; BORON-NITRIDE; TRANSPORT; CONTACT; MONOLAYER; BARRIER; DEVICE;
D O I
10.1021/acs.nanolett.7b00473
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stacked van der Waals (vdW) heterostructures where semi-conducting two-dimensional (2D) materials are contacted by overlaid graphene electrodes enable atomically thin, flexible electronics. We use first-principles quantum transport simulations of graphene-contacted MoS2 devices to show how the transistor effect critically depends on the stacking configuration relative to the gate electrode. We can trace this behavior to the stacking-dependent response of the contact region to the capacitive electric field induced by the gate. The contact resistance is a central parameter and our observation establishes an important design rule for ultrathin devices based on 2D atomic crystals.
引用
收藏
页码:2660 / 2666
页数:7
相关论文
共 50 条
  • [31] First principles study of field effect device through van der Waals and lateral heterostructures of graphene, phosphorene and graphane
    Espinoza, C. Rebolledo
    Ryndyk, D. A.
    Dianat, A.
    Gutierrez, R.
    Cuniberti, G.
    NANO MATERIALS SCIENCE, 2022, 4 (01) : 52 - 59
  • [32] Effects of interlayer coupling on the electronic structures of antimonene/graphene van der Waals heterostructures
    Zhang, Fang
    Li, Wei
    Dai, Xianqi
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 826 - 832
  • [33] Graphene-hexagonal boron nitride van der Waals heterostructures: an examination of the effects of different van der Waals corrections
    Sevilla, John Radly M.
    Putungan, Darwin B.
    MATERIALS RESEARCH EXPRESS, 2021, 8 (08)
  • [34] Longitudinal optical conductivity of graphene in van der Waals heterostructures composed of graphene and transition metal dichalcogenides
    Cui, Ruoyang
    Li, Yaojin
    PHYSICS LETTERS A, 2024, 495
  • [35] Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures
    Safeer, C. K.
    Ingla-Aynes, Josep
    Herling, Franz
    Garcia, Jose H.
    Vila, Marc
    Ontoso, Nerea
    Reyes Calvo, M.
    Roche, Stephan
    Hueso, Luis E.
    Casanova, Felix
    NANO LETTERS, 2019, 19 (02) : 1074 - 1082
  • [36] Tunneling devices based on graphene/black phosphorus van der Waals heterostructures
    Jiang, Xiao-Qiang
    Li, Xiao-Kuan
    Chen, Shao-Nan
    Su, Bao-Wang
    Huang, Kai-Xuan
    Liu, Zhi-Bo
    Tian, Jian-Guo
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [37] Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field
    Zhang Fang
    Jia Li-Qun
    Sun Xian-Ting
    Dai Xian-Qi
    Huang Qi-Xiang
    Li Wei
    ACTA PHYSICA SINICA, 2020, 69 (15)
  • [38] Nonlocal Spin Valves Based on Graphene/Fe3GeTe2 van der Waals Heterostructures
    He, Xin
    Zhang, Chenhui
    Zheng, Dongxing
    Li, Peng
    Xiao, John Q.
    Zhang, Xixiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (07) : 9649 - 9655
  • [39] Viscous hydrodynamics of excitons in van der Waals heterostructures
    Mantsevich, V. N.
    Glazov, M. M.
    PHYSICAL REVIEW B, 2024, 110 (16)
  • [40] Hot carrier photovoltaics in van der Waals heterostructures
    Paul, Kamal Kumar
    Kim, Ji-Hee
    Lee, Young Hee
    NATURE REVIEWS PHYSICS, 2021, 3 (03) : 178 - 192